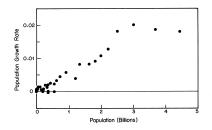
Reference: Michael Kremer, 1993, Population Growth and Technological Change: One Million B.C. to 1990, *Quarterly Journal of Economics* 108, 681-716. Weil Chapter 4.1., 9.1.

Empirical observation: in world history:

- $\hat{L} \equiv n \neq \text{const.}$
- $n \approx$ proportional to L

 \rightarrow *L* grows more than exponentially (hyper-exponentially) for most of world history. \rightarrow human kind grows different to all other species in the world.



[World population over the long run]

- A theoretical model that combines
 - endogenous technological progress (last lecture)
 - endogenous population growth (Part I of the course)

can explain this stylized fact.

- The criticized scale effect is now useful.
- It explains why among societies with no contact to each other those with higher initial *L* have faster growth

The Model

$$Y = AL^{\alpha} T^{1-\alpha} \tag{1}$$

T: arable land, not-accumulable, normalized to 1.

Observe:

- no capital; land is important.
- decreasing returns to scale w.r.t. to accumulable physical factors (0 < α < 1).

Income per capita:

$$y \equiv \frac{Y}{L} = AL^{\alpha - 1}$$

Recap from last course: Malthus (1798): Principle of Population:

- Ceteris paribus, the less people there are on a given piece of land the better off they are.
- The better off people are the more they multiply.
- The positive check: as for other animals there exists a given carrying capacity. Mortality balances fertility.
- Preventive check (unique to humans): anticipating this, humans (somewhat) control fertility.

[Insert: Malthusian Model: Diagrammatic Analysis]

Observe: There exists a unique equilibrium income $y = \bar{y}$

- above which $\dot{y} < 0$ because $\dot{L} > 0$ (drive for reproduction)
- below which $\dot{y} > 0$ because $\dot{L} < 0$ (premature death) Thus a unique stable equilibrium L at \bar{y}

$$\bar{y} = AL^{\alpha - 1} \quad \Rightarrow \quad L = \left(\frac{\bar{y}}{A}\right)^{1/(\alpha - 1)}$$
 (2)

Yet this was last course.

- $\bullet\,$ Malthus: A is constant $\rightarrow\,$ replaced by
- Kremer/Jones/Romer: A grows permanently.

We get an explanation for the puzzling observation

- that there were new ideas/productivity growth all time.
- yet there was no (pronounced) improvement of income per capita.

The technological advances were "eaten up" by population growth. Economic development meant population growth: $A \uparrow \rightarrow L \uparrow \rightarrow y$ const.

This notion is correct until \approx 1800 (when Malthus wrote his essay).

TABLE 9.1 Growth Accounting for Europe, a.d. 500-1700					
Period	Annual Growth Rate of Income per Capita, ŷ	Annual Growth Rate of Population, <i>L</i>	Annual Growth Rate of Productivity, Â		
500-1500 1500-1700	0.0% 0.1%	0.1% 0.2%	0.033% 0.166% i		

Observe

- $y_0 \approx y(1800) \approx 250\$ \approx y$ poorest countries today.
- Economic growth *must* be recent phenomenon:

$$250 \cdot e^{0.025 \cdot 205} = 42044$$
 (\approx the USA today).

• We call \bar{y} subsistence income.

Formally with our simplest approach:

$$\dot{A} = A \cdot B \cdot L \quad \Rightarrow \quad \hat{A} = B \cdot L \tag{3}$$

- B is the probability that you or I invent the wheel / the clock / the compass.
- (apply law of large numbers:) B is average research productivity.

Note the difference to our R&D model:

- Innovation is costless (the same L's are also engaged in production of goods).
- Notion of a society / economy: set of people who
 - are in contact which each other
 - have institutions to access knowledge created elsewhere
- Germany \leftrightarrow Europe \leftrightarrow Asia $\not\leftrightarrow$ America.

Log-diff. (2)

$$n = \frac{1}{1 - \alpha} \hat{A} \tag{4}$$

and insert (3)...

$$n = \frac{1}{1 - \alpha} B \cdot L \tag{5}$$

Result: population growth is proportional to its level.

A 1st Generalization

Considering general effects of

- standing on shoulders
- stepping on toes
- \rightarrow (3) is replaced by

$$\dot{A} = A^{\phi} B L^{\lambda} \tag{6}$$

i.e.

$$\hat{A} = A^{\phi - 1} B L^{\lambda} \tag{7}$$

And thus along a balanced growth path (steady-state) where \hat{A} is constant

$$\hat{A} = rac{\lambda}{1-\phi}n$$

Compare with semi-endogenous growth theory (last lecture)

Now insert (7) into (4):

$$n = \frac{1}{1 - \alpha} A^{\phi - 1} B L^{\lambda} \tag{8}$$

and substitute A from (2)

$$n = \frac{1}{1-\alpha} B L^{\lambda} \left(\bar{y} L^{1-\alpha} \right)^{\phi-1} \quad \Rightarrow \quad n = \frac{1}{1-\alpha} B L^{\lambda-(1-\phi)(1-\alpha)} \bar{y}^{\phi-1} \tag{9}$$

Example

- $\lambda = 1$ (normal case)
- $\phi = 0$ (extreme case: no knowledge spillovers)
- $\alpha = 2/3$ (labor share in production, normal case)

i.e.

$$n = \frac{1}{1 - \alpha} B L^{2/3}$$

 \Rightarrow *n* is "almost" proportional to *L*

Henceforth we assume: $\lambda - (1 - \phi)(1 - \alpha) > 0$ (not very restrictive)

A 2nd Generalization

- so far: infinite speed of adjustment towards subsistence.
- now: finite adjustment speed.

$$n = n(y)$$
 with $n(\bar{y}) = 0$
 $n'(\bar{y}) > 0$

How does n adjust to income ?

- fertility
- mortality

not modelled here \rightarrow Part I of the course.

Instead we postulate a n(y) function consistent with demographic history (of fully developed countries):

[Insert Figure 2: Population Growth vs. Income]

As before:

$$y = AL^{\alpha - 1} \quad \Rightarrow \quad \hat{y} = \hat{A} - (1 - \alpha)n(y) \tag{11}$$

Observe: with positive \hat{A} there exists no equilibrium \bar{y}

- Suppose an equilibrium \bar{y} with $n(\bar{y}) = 0$ (constant population) exists.
- Then $\hat{y}(\bar{y}) = 0$ (def. of an equilibrium).
- Thus, $n = \frac{1}{1-\alpha} \hat{A} > 0 \Rightarrow a$ contradiction.

Intuition: $n' = |\infty|$ (in the simple model) has been replaced by finite n'. There can't be a steady-state because more people invent more.

Insert (7) in (11):

$$\hat{y} = BA^{\phi-1}L^{\lambda} - (1-\alpha)n(y)$$
(12)

Insert from (1):

$$y = AL^{\alpha - 1} \quad \Rightarrow \quad A = yL^{1 - \alpha}$$

$$\hat{y} = By^{\phi-1} L^{\lambda - (1-\phi)(1-\alpha)} - (1-\alpha)n(y)$$

$$n = n(y)$$
(13)

 \rightarrow 2-dim system of differential equations.

Phase Diagram Analysis

The $\dot{L} = 0$ –locus

- from $n(y) = 0 \Rightarrow y = \overline{y}$
- $L \uparrow \text{ if } y > \overline{y}$
- $L \downarrow$ if $y < \overline{y}$

The $\dot{y} = 0$ -locus from (13)

$$0 = By^{\phi-1}L^{\lambda-(1-\phi)(1-\alpha)} - (1-\alpha)n(y) = G(y,L)$$

Thus

$$\frac{\partial y}{\partial L} = -\frac{\partial G/\partial L}{\partial G/\partial y} = \frac{[\lambda - (1 - \phi)(1 - \alpha)]L^{\lambda - (1 - \phi)(1 - \alpha) - 1}}{(1 - \phi)By^{\phi - 2}L^{\lambda - (1 - \phi)(1 - \alpha)} + (1 - \alpha)n'} > 0$$

The $\dot{y} = 0$ -locus

- has positive slope
- goes through L = 0, $y = \bar{y}$
- with $\hat{y} > 0$ if $L > L | \hat{y} = 0$ i.e. $y \uparrow$ to the right of $\dot{y} = 0$
- and $\hat{y} < 0$ if $L < L | \hat{y} = 0$ i.e. $y \downarrow$ to the left of $\dot{y} = 0$

Together:

[Insert Figure: Phase Diagram]

Note that it is impossible for any trajectory to cross L = 0 Slope of trajectories:

$$\frac{dy}{dL} = \frac{\frac{dy}{dt}}{\frac{dL}{dt}} = \frac{\dot{y}}{\dot{L}} = \frac{\hat{y} \cdot y}{n \cdot L}$$

which goes to ∞ for $L \rightarrow 0$.

Conclusion

- y is permanently growing
- *n* follows the path of demographic transition
- Eventually $\frac{\partial n}{\partial y} = 0$

 $\Rightarrow \hat{y}$?

If a stable balanced growth path exists (not proven by Kremer)

$$g_{\hat{A}} = 0 \quad \Rightarrow \quad \hat{A} = \frac{\lambda}{1-\phi}n$$

and thus

$$\hat{y} = \underbrace{\left[\frac{\lambda}{1-\phi} - (1-\alpha)\right]}_{n}$$

>0 since $\lambda - (1-\phi)(1-\alpha) > 0$

 \Rightarrow Long-run positive growth if n > 0 (the Jones-Result)

Empirical Results

1. Kremer estimates

$$n = \beta_0 + \beta_1 L$$

using historical data starting with the homo erectus one million years ago (from archeological and anthropological evidence) and finds support for his theory that suggests

•
$$\beta_1 > 0$$
 ($\beta_1 = \frac{B}{1-\alpha}$ in the simple model)

• β_0 insignificant

He estimates the general model

$$n = \beta_0 + \beta_1 L^{\beta_2}$$
 $\beta_2 \equiv \lambda - (1 - \phi)(1 - \alpha)$

and finds estimates in the range [0.9, 1.4]

Thus, the simple model is a good approximation.

2. Evidence from technologically separate regions Idea

- Land size is given
- Assumption: initial population L_0 is proportional to land size (same L/T everywhere)
- According to the theory $L_0 \uparrow \rightarrow \hat{A} \uparrow \rightarrow L \uparrow \rightarrow \hat{A} \uparrow$ etc
- Thus, larger land areas
 - create more tech. progress \rightarrow their pop. grows at higher rate
 - end up with higher population density

Order 5 areas of the world by size

- Old World
- Americas
- Australia
- Tasmania
- Flinders Island

separated since end of last ice age (10.000 BC) until C. Columbus (1490 AC)

The chance that the order by population density is the same is 1/120 (or 1/24 without Flinders Island)

	Land area (million km²)	Population c. 1500 (millions)	Population/(km ²)
Old World ^a	83.98	407	4.85
Americas ^b	38.43	14	0.36
Australia ^c	7.69	0.2	0.026
Tasmania	0.068	0.0012 - 0.005	0.018-0.074
Flinders Island	0.0068	0.0	0.0

TABLE VIIPOPULATION AND POPULATION DENSITY, C. 1500

See also: Jared Diamond: Guns, Germs, and Steel.

Conclusions / Open Questions:

- The Kremer model explains the demo-economic history of the world "until recently".
 - but the demographic transition was not explained (\rightarrow 1st course).
- But what about today's LDCs? Obviously, high population growth does not push technological progress in SSA.
- The model fails also to explain growth in today's fully developed countries
 - innovations a no longer a by-product of our existence.
 - R&D is a big business / a market activity.

More on the last issue next.