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Abstract. This paper provides a rigorous comparative analysis of assumptions and

predictions of alternative economic theories of health demand and human aging. The

health-capital model, based on Grossman (1972) and the health-deficit model, based

on Dalgaard and Strulik (2014). We show that both theories lead to fundamentally

different predictions of health behavior and human life histories. We find that the

health-deficit model provides a consistent approach to health behavior and aging

whereas the health-capital model generates predictions that are hard to square with

the stylized facts. We argue that the root of the disagreement of the theories is the

following: The health-capital model postulates that of two people of the same age the

healthier one looses more health in the next instant whereas the health-deficit model,

based on insights from modern gerontology, proceeds from the opposite assumption.
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1. Introduction

The health capital model of health demand, also known as the Grossman model, although the

major tool in health economics for almost 40 years, is still not fully understood. In this paper

we use phase diagram techniques to investigate in general the predictions of the health-capital

model when health investment is motivated by the desire for a longer life and the utility- or

productivity enhancing effects of good health. We compare the results with the predictions made

by the alternative economic approach to health investments, the health-deficit model developed

by Dalgaard and Strulik (2014). The main difference of both models lies in their distinct view on

human aging. The health-capital model conceptualizes the human life course as accumulation

of health capital while Dalgaard and Strulik conceptualize life as the accumulation of health

deficits.

Applications of the health-deficit approach (Dalgaard and Strulik, 2012, 2014; Strulik, 2011)

hitherto emphasized as their major advantage that the main health parameter – the force of

aging – has a foundation in medical science where it has been estimated with great precision.

This means that numerical calibrations of the model are straightforward and leave no degrees of

freedom for the researcher. We have also stressed the model’s formal elegance, which allows a

straightforward interpretation of results, and the fact that health deficits are easily measurable,

in contrast to health capital, which is a latent concept. Nevertheless, these features may not be

regarded as sufficient to abandon the health-capital paradigm of health capital accumulation.

Advocates of the health-capital model could defend the approach based on Friedman’s (1953)

methodology of economic modeling: that it is not the scientific foundation of the assumptions

but the predictive performance that constitutes the quality of a theory. In the words of a referee

of one of our papers: “We don’t usually look at engineers to measure the depreciation of physical

capital in economics. So why should we ask doctors to measure the depreciation of health human

capital?” In this paper we show that it is important to built on a scientific foundation of health

depreciation in order to get the predictions for human aging and health demand over the life

course right.

Specifically, we use phase diagram techniques in order to compare two simplified versions of

the health-capital model and the health-deficit model. These models capture the basic under-

lying mechanism of the respective theories and are simple enough to be rigorously analyzed.

Specifically we consider the impact of health investments on (i) longevity and utility, and (ii)
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longevity and productivity. With this distinction we follow the tradition in the mainstream

health literature (e.g. Grossman, 2000). Variant (i) and (ii) are also known in the literature

as “pure consumption model” and “pure investment model”. These names have been coined

because a large body of the health-capital literature focusses on either consumption or produc-

tivity effects of health investments and neglects longevity effects by imposing a fixed terminal

time of death. Longevity effects were introduced into the health-capital context by Ehrlich and

Chuma (1990).1

The original health-capital model was stated in discrete time, which has complicated the

analysis and lead to confusing results concerning the endogenous determination of the age at

death, which would be invariant to sufficiently small parametric changes (see the discussion in

Ried, 1998; Grossman, 2000). This outcome, however, is solely an artefact of the discrete time

concept. Here we thus follow the majority of more recent applications of the health-capital

model and set it up in continuous time. Another speciality of Grossman’s original model is that

it distinguishes between income spent on health care and time as inputs in health investment.

This certainly adds more realism but does not affect any of the qualitative implication made

in the present study (as long as the commodity production functions are linear homogenous, as

typically assumed). Like many other applications of the health-capital model we thus focus on

goods inputs. A major simplification of the health-capital model is the assumption of constant

returns in health investment. Since this assumption has been heavily criticized and debated in

the literature (e.g. Ehrlich and Chuma, 1990; Grossman, 2000; Galama et al., 2012), we follow

Grossman in the main text and assume constant returns but show in the Appendix that the main

results are also obtained under decreasing returns. The main concerns with the health-capital

model arise independently from the returns to scale assumption.

Several other extensions of the simple models are conceivable and needed in order apply them

for the discussion of actual policy issues. These applications, due to increasing complexity,

would rely on numerical solutions of one particular calibration of the specific type of model. As

will become apparent below, a purely numerical analysis entails the danger to neglect general

properties and implication of the model by focussing on a specific numerically predetermined

1An incomplete list of studies based on the health-capital paradigm includes Cropper (1977), Eisenring (1999),
Forster (2001), Galama and Kapteyn (2011), Galama et al (2012), Jacobsen (2000), Kuhn et al. (2012), Laporte
and Ferguson (2007), Liljas (1998), Meier (2000), Picone et al. (1998), and van Kippersluis and Galama (2014).
Important empirical studies are Muurinen (1982) and Wagstaff (1986). Grossman (2000) provides an overview.
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trajectory. Most importantly, requesting the arrival at a state of low terminal health may conceal

the feasibility of an actually preferred life trajectory that converges towards a permanently better

state of health. The simplified model versions presented here, in contrast, are ideal in order to

elaborate the basic mechanisms in a general fashion by means of phase diagram analysis. These

basic mechanisms are also at work in any extended version of the basic models.

The published variants of the health-capital model can also be distinguished by the imposed

terminal condition (Forster, 2001). Here, we follow Ehrlich and Chuma (1990) and many others

and consider a free terminal time problem. This means that the time of death is a free vari-

able which can be influenced through health investments. Death is determined by a terminal

condition on health capital or health deficits, respectively, i.e. survival is untenable below a

minimum state of health. There exists, however, also a relatively large literature that considers

health-capital accumulation for a fixed terminal time (e.g. Eisenring, 1999; Kuhn et al., 2012;

van Kippersluis and Galama, 2014). According to this approach, the time of death is predeter-

mined and death occurs irrespective of an individual’s health status. Individuals “only” decide

how healthy they want to be when they have to die (and, of course during the rest of their life).

Here we do not follow this approach because we want to scrutinize the determinants of human

aging and longevity, which is impossible under the fixed terminal time approach.

The predictive quality of a model of health demand could be, of course, evaluated in many

dimensions. In keeping with Friedman’s methodology, however, we consider it sufficient to show

that a theory fails to predict some core features of the human life course. Specifically, we consider

two features of a good theory: (i) It should be possible to find at least some initial conditions

and parameters (income, health technology) for which the theory predicts that life is finite. (ii)

The theory should be able to predict that health expenditure rises when health declines, at least

in old age. Below we show that the health-capital model usually predicts eternal life. If this

is ignored (by imposing a finite terminal time or by, perhaps inadvertently, disregarding this

infinite horizon solution in a numerical approach), then the health-capital model predicts that

health expenditure declines as people get unhealthier.

We show that the health-deficit model does not share these worrisome predictions. In contrast

it predicts that eternal life does not exist when the state of medical technology is sufficiently

low and that health expenditure may increase or decrease as individuals age, depending on the

characteristics of the utility function.
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These distinctive predictions of the two theories have an intuitive explanation. Consider

two individuals of the same age and the same socio-economic background. Then the health-

capital theory assumes that the healthier individual ages faster (loses more health in the next

instant) while the health-deficit theory assumes that the unhealthier individual ages faster (loses

more health in the next instant). To see this formally, consider health capital accumulation,

Ḣ = f(I) − δH, the core equation of the health-capital model. Here H is health capital, I is

health investment, f is a positive function and δ is the depreciation rate. The change of health

is given by Ḣ ≡ ∂H/∂t, in which t is age. Observe that health capital accumulation implies

∂Ḣ/∂H = δ > 0. In words, the healthier individual, i.e. the one with the larger health capital

stock, loses more health through health depreciation. Notice that this outcome is observed

irrespective of whether the depreciation rate is constant or age-dependent. Below we show that

this feature creates an equilibrating force, a movement towards a constant stock of health, which

promotes immortality of the modeled agents.

Consider, in contrast health deficit accumulation, Ḋ = µD − f(I), in which D are health

deficits, i.e. Ḋ ≡ ∂D/∂t is the change of deficits that occurs with aging. Observe that ∂Ḋ/∂D =

µ > 0. In words, the unhealthier individual, i.e. the individual with more health deficits, is

predicted to develop more deficits in the next instant. This creates a dis-equilibrating force,

moving individuals away from a state of constant health and along a trajectory of increasing

accumulation of health deficits towards death.

Of course these shortcomings of the health-capital model remained not unnoticed (see e.g.

Wagstaff, 1986, Case and Deaton, 2005). We claim no originality here. We only rigorously

prove the shortcomings. The previous criticism of the health-capital model, however, was non-

constructive, without suggesting a (self-contained) alternative theory. Here we provide such a

theory. We show that the predictive difficulties of the health-capital model do not carry over

to the health-deficit model whose assumptions are based on a scientific foundation. That is, we

demonstrate a positive correlation between the quality of the assumptions and the predictive

quality for two alternative theories of health demand and human aging.

The paper is organized as follows. The next section provides an introduction to the biological

foundation of the health deficit model. While the focus of this paper is on predictions, this section

is nevertheless useful in order to understand how a scientific foundation of assumptions can

improve the predictive quality of a theory. Section 3 solves the “pure consumption” model under
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the hypothesis of health capital accumulation and health deficit accumulation and compares the

respective predictions for health demand over the life cycle, aging, and longevity. Section 4

repeats this analysis for the “pure investment” model. Section 5 concludes.

2. Inspiration and Foundation of the Theories of Health Capital Accumulation

and Health Deficit Accumulation

It is perhaps fair to say that health capital theory has no foundation in the natural sciences.

As evident from Grossman (1972) and Grossman (2000) the theory was heavily inspired from the

accumulation of human capital in form of education (Becker, 1967; Ben-Porath, 1967). Yet, the

seminal health capital papers provide no references to the biological, medical, or gerontological

literature on human aging in order to justify the core assumption of health capital accumulation.

Apparently the model was developed sui generis. One immediate problem arising from the fact

that health capital is a latent variable and that its notion is exclusively shared within the

economics profession concerned the empirical test of the theory. How should one proxi for the

unobservable? A popular approach in empirical applications used the fact that health deficits

are observable and tried to estimate health capital from a vector of (absent) health deficits (see

Muurinen, 1982; Wagstaff, 1986). However, we argue that there is no need for such a ‘detour’.

A theory of health demand can be founded directly on observable health deficits without the

construction of an unobservable health capital stock.

The theory of health deficit accumulation proposes to integrate into economics a notion of

human aging founded in the natural sciences. Aging is defined as the intrinsic, cumulative,

progressive, and deleterious loss of function that eventually culminates in death (Arking, 2006).

In order to understand how humans (and other animals) age, modern gerontology has adopted

insights and mechanisms from reliability theory in engineering (Gavrilov and Gavrilova, 1991).

The theory is based on the notion of gradual depletion of redundancy in the human body.2 In

its simplest form, reliability theory regards a body (or any organism) as a whole as consisting

of a fixed number of non-aging components, where non-aging is defined as exhibiting a constant

failure rate.3 The phenomenon of redundancy is captured by the assumption that components

2In economics, McFadden (2008) argued in favor of the desirability of a theory of health demand based on
the concepts of reliability and redundancy.

3The perpetual youth model (In this sense, the models of Yaari (1965) and Blanchard (1982), by originating
from a constant failure rate of the whole human body, conceptualize the whole person as non-aging, as aptly
alluded to by the “perpetual youth” naming of the model (Blanchard and Fisher (1989).
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are connected in parallel, and that the system as a whole is assumed to survive as long as there

is one functioning component remaining. Aging is thus explained as a consequence of initial

redundancy. Indeed, the functional capacity of organs in young adults is estimated to be tenfold

higher than needed for mere survival (Fries, 1980). As a person gets older and redundancy in

the system as a whole declines, the failure rate of the whole body increases. This way the simple

model successfully reproduces a rising death rate with age. Many extensions of the basic model

have been developed, enabling a comprehensive understanding of generalities and specific details

of the human aging process (like Gompertz-Makeham law and the leveling off of aging for the

oldest old, see e.g., Gavrilov and Gavrilova (1991).

As the redundancy of the body shrinks, a person becomes more fragile. The fact that humans,

as they age, develop an increasing number of disorders or health deficits has been exploited

empirically by the development of the frailty index by Mitnitski and Rockwood and various

coauthors (e.g., Mitnitski et al, 2002a,b; 2005; Rockwood and Mitnitski, 2006). The frailty

index computes from a sufficiently long list of potential health deficits the proportion of deficits

that an individual has, at a given age. It constitutes a comprehensive measure of human health,

aging, and mortality.4

Let D(t) denote the number (percentage) of health deficits that an individual of age t has.

Mitnitski et al. (2002a) show that aging is then well represented by a linear-exponential asso-

ciation of health deficits and age: D (t) = E + Beµt. This “law of increasing frailty” explains

around 95 percent of the variation in the data, and its parameters are estimated with great

precision. While the parameter E turns out to be common for men and women, the parameters

B and µ are gender specific. Most importantly the parameter µ, the rate of aging, has been

estimated to be approximately of the same size across different populations (Rockwood and

Mitnitski, 2007). On average adult individuals accumulate 3-4 percent more deficits from one

birthday to the next.

In order to integrate the law of health deficit accumulation into economics we begin with

restating it in flow form by differentiating with respect to age: Ḋ (t) = µ (D (t)− E). Notice

4Methodologically, the frailty index exploits the fact that health deficits are largely interdependent. Ap-
proaches to estimate bio-markers (like health capital) using multivariate regression or principle component anal-
ysis are, according to the frailty literature, flawed because they assume statistical independence of the right hand
side variables (Mitnitski et al., 2002).
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that E works to slow down the speed of deficit accumulation by making health deficit accumu-

lation less then exponential. In the natural science literature the parameter E is interpreted as

capturing the impact of non-biological factors on deficit accumulation (Mitnitski et al., 2002a).

Accordingly, we assume that E is amendable to change by way of deliberate health investments.

Specifically, we propose the following parsimonious refinement of the process of health deficit

accumulation: Ḋ(t) = µ (D(t)−Af(I)− a), in which I is health investment and f is a posi-

tive, concave function. The parameter a captures environmental influences on aging beyond the

control of the individual and the parameters A captures the state of the health care technology.

In principle, health care expenditure could also be thought of as having a bearing on the force

of aging µ. So far, however, the idea that “standard” medical treatments have substantially

modified the rate at which our bodies decay received little empirical support (Gavrilov and

Gavrilova, 1991). Standard treatments like, for example a bypass operation or a liver transplant,

are effectively delaying death (by removing one or several health deficits) but they are not

manipulating the intrinsic rate of deficit accumulation. Death occurs when health deficits reach

an upper boundary to deficit accumulation, D̄. Rockwood and Mitnitski (2006) present evidence

supporting the notion of a maximum number of viable health deficits. Notice that in the theory

of health deficit accumulation chronological age does not play a role in itself. It takes into account

that a aging has a molecular structure and it is not tied to a clock or calender. This is important

since biologists emphasize that there should be no role for (calendar-) time in a successful model

of human aging: “Only if we can substitute the operation of the actual physiological mechanism

for time we have a firm idea of what we are talking about.” (Arking, 2006, p. 10).

3. Health Consumption

3.1. Health Capital Accumulation. Suppose that health has two functions: it provides util-

ity and it determines death. A long life is desirable because the utility function is concave in

goods consumption C and health capital H but linear in longevity. Assume that instantaneous

utility is strictly concave and iso-elastic such that

U(C,H) =

(
CαH1−α)1−σ − 1

1− σ (1)

for 0 < α < 0, σ > 0, and σ 6= 1. For σ = 1 the utility function reads U = α logC+(1−α) logH.

The parameter σ reflects the inverse of the elasticity of intertemporal substitution and the
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parameter α reflects the relative weight of goods consumption in utility. Together they determine

the sign of the derivatives:

UCC < 0 for 1− α(1− σ) > 0 (2a)

UHH < 0 for 1− (1− α)(1− σ) > 0 (2b)

UCH > 0 for (1− α)(1− σ) > 0. (2c)

Conditions (2a) and (2b) assure decreasing marginal utility. They are always fulfilled under

the parameter restrictions made. The cross derivative (2c) is allowed to be positive (individuals

prefer to consume a lot when they are healthy), negative, or zero (in the case of log utility).5

Individuals maximize life-time utility

V =

∫ T

0
U(C,H)e−ρtdt, (3)

Here, t is age, ρ is the discount rate of future consumption, and T is the yet to be determined

age of death. In contrast to the available literature, we do not impose a finite T . In principle,

T = ∞. Of course, we expect from a plausible model that it is capable of generating a finite

life, for example because the state of medical technological knowledge is not (yet) sufficiently

advanced to life forever. In any case, however, mere logical consistency suggests the following

assumption about the size-ordering of health capital stocks.

Assumption 1. The health capital stock at death is smaller than the health capital stock that

would guarantee eternal life, Hmin < H∗.

According to the health-consumption model, individuals face a constant stream of income Y

until they die. This assumption is inconsequential for the results because all decisions depend

on discounted life-time income, which could alternatively result from a constant or non-constant

income per age profile. The decisive assumption is that income is independent from health

status. Income is spent on consumption and investment in health, denoted by I. The relative

price of health goods is given by p and is constant over time. The budget constraint at any time

is thus given by

Y = C + pI. (4)

5In the case of σ > 1 we assume that consumption is scaled appropriately in order to avoid negative utility,
which would lead to the degenerate outcome that life-time utility is decreasing in the length of life such that
individuals would prefer immediate death; see Hall and Jones (2009) for an extensive discussion of this property.
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As discussed in the Introduction, the health-capital model postulates that health is accumu-

lated more or less in the same fashion as human capital in the form of education is accumulated

in many economic models of human capital accumulation. Specifically health capital H evolves

according to

Ḣ = AI − δH, (5)

in which δ is the rate of depreciation of health capital. The parameters A > 0 captures the power

of medical technology. For simplicity, we focus on non-decreasing returns in health investment.

Allowing for decreasing returns adds more realism at the expense of increasing analytical com-

plexity. In the Appendix we show that all the main conclusions are robust against decreasing

returns in health investment.

Individuals are endowed with an initial stock of health capital H(0) = H0 and survival requires

that the health stock exceeds Hmin ≥ 0. In other words, individuals die at age T when health

deteriorates to the level H(T ) = Hmin. Following the literature, we treat the depreciation rate

alternatively as constant or rising with age. We begin by considering the case of parametrically

given δ and discuss age-dependent health depreciation later. Notice, however, that the health-

capital model in any case implies that the loss of health at any age δH is greater when the stock

of health is large, that is when individuals are relatively young. Formally, this can be seen from

∂Ḣ/∂H < 0. Ceteris paribus, individuals age at a high rate when they are young and healthy

and at relatively slow rate when they are old. This feature appears to be not only unrealistic

but it implies also that individuals converge towards a constant state of health, as shown below.

Individuals are assumed to chose optimal health expenditure over the life course by maximizing

(3) subject to (4) and (5) given initial health H0 and the boundary condition H ≥ Hmin. The

associated current value Hamiltonian is

J =

(
CαH1−α)1−σ − 1

1− σ + λH (AI − δH) , (6)

in which λH denotes the costate variable, i.e. the shadow price of health. The associated first

order condition and costate equation are:

∂J

∂I
=
α
(
CαH1−α)1−σ − 1

C
(−p) + λHA = 0 (7)

∂J

∂H
=

(1− α)
(
CαH1−α)1−σ − 1

H
− λDδ = λHρ− λ̇H . (8)
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In principle, there are infinitely many life-time trajectories fulfilling the first order conditions.

The optimal solution moreover fulfills the transversality condition (see e.g. Acemoglu (2009,

Theorem 7.1):

J(I(T ), H(T ), λH(T )) = 0 for finite T (9a)

lim
T→∞

J(I(T ), H(T ), λH(T ))e−ρT = 0 otherwise (9b)

If a fixed point exists such that limT→∞H(T ) = H∗, condition (9b) simplifies to

lim
T→∞

λH(T )H(T )e−ρT = 0. (9c)

It turns out to be most convenient to discuss the solution in the health-consumption space.

Notice that optimal health investment is easily recovered as the residual pI = Y −C. Replacing

I in (4) and differentiating (7) with respect to age and using the result to substitute λH and λ̇H

in (8) provides the equation of motion for goods consumption and health capital:

Ċ

C
=

1

1− α(1− σ)

{
(1− α)A

αp

C

H
− (δ + ρ) + (1− α)(1− σ)

Ḣ

H

}
(10)

Ḣ =
A(Y − C)

p
− δH. (11)

Human aging as described by the dynamical system (10) and (11) can be conveniently analyzed

using phase diagram techniques. Notice from (10) that ∂Ċ/∂C > 0 when Ḣ = 0, such that the

arrows of motion point towards larger C. Most importantly, notice from (11) that ∂Ḣ/∂H < 0,

implying that the arrows of motion point towards lower health when the health stock is above its

equilibrium value and towards better health when the health stock is below its equilibrium value.

This outcome is a consequence of the initial assumption about health capital accumulation and

will be identified as the driving force behind the model’s implausible predictions.

From (11) the Ḣ = 0–isocline is given by C = Y − δpH/A. It is a falling straight line

originating from Y . From (10) the Ċ = 0–isocline is obtained as

C =
α

(1− α) [1− α(1− σ)]

[{
ρ+ δ [1 + (1− α)(1− σ)]

p

A
H − (1− α)(1− σ)Y

}]
. (12)
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Figure 1: Health Capital Accumulation and Consumption
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Ċ = 0
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The slope of the isocline is generally ambiguous. A positive cross derivative UCH > 0 is a

sufficient, non-necessary condition for a positive slope. The isoclines intersect at the fixed point

H∗ =
(1− α)A

p(δ + αρ)
, C∗ =

α(δ + ρ)

δ + αρ
. (13)

Because health does not deteriorate at the fixed point, it characterizes a state of eternal life.

Observe from (13) that eternal life always exists in the health-capital model, for any parameter

constellation and any initial state of health.

The panel on the left hand side of Figure 1 shows the phase diagram for the case of a positive

slope. Inspection of the phase diagram identifies eternal life as a saddlepoint: from each side of

the fixed point a unique trajectory (stable manifold) leads towards the fixed point. This means

that eternal life can always be reached, from any initial state of health. Because health capital

is constant at the steady state, the transversality condition (9c) applies. Because consumption

is constant at the steady state, the shadow price λH is constant as well, see (7), and thus the

transversality condition is fulfilled. According to the first order conditions and the transversality

condition, it is optimal to converge towards eternal life. The initial health endowment may be

higher or lower than H∗ but due to Assumption 1, the deadly health capital stock is necessarily

situated to the right of H∗.

Many applications of the health-capital model do not identify eternal life as the optimal so-

lution because they assume a fixed terminal T or because they simply ignore from the outset
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the possibility that a variable T could be infinite. The latter could easily happen in a purely

numerical application that requires arrival at the boundary value Hmin without caring about

the potential existence of H∗. If, however, arrival at Hmin is enforced, the health-capital model

implies that consumption rises as health capital declines. Trajectory C shows an example solu-

tion. Notice that H0 cannot be reached by any trajectory in which consumption is declining.

This means that the health-capital model – when it ignores eternal life – predicts that health

expenditure declines as the state of health erodes. This paper is, of course not the first one to

arrive at this conclusion (see e.g. Wagstaff, 1986).

The panel on the right hand side of Figure 1 shows the case of a negative slope of the

Ċ/C = 0–isocline. Notice from (12) that the Ċ/C = 0–isocline cuts the C-axis at C1 ≡
α(σ − 1)/ [1 + α(σ − 1)]Y . It thus follows from (2a) that C1 < Y . The Ḣ = 0–isocline cuts

the C-axis at C2 = Y and thus C2 > C1. This means that the Ḣ = 0–isocline cuts the Ċ = 0–

isocline from above. The arrows of motion point upwards above the Ċ = 0-isocline and from

the right of the Ḣ = 0-isocline to the left and vice versa. The fixed point is thus again identified

as a saddlepoint. Eternal life is the preferred solution. However, if we ignore this outcome, it

would be impossible to reach any terminal Hmin smaller than the initial health H0 as long as

the initial health capital stock is smaller than the one guaranteing eternal life. The arrows of

motion are always pointing away from Hmin, towards eternal life.

The fact that eternal life is not only possible but inescapable questions the plausibility of

theoretical and empirical studies of the health-capital model. An ad hoc remedy of the problem,

suggested by the literature, is to assume that health depreciation δ is increasing with age. An

undesirable side-effect of age-dependent health depreciation is that the comparative statics can

no longer be assessed qualitatively. This conclusion becomes obvious by writing age-dependent

depreciation as δ̇(t) = f(δ(t)) such that the depreciation rate becomes another state variable.

This means that health dynamics are now governed by a three-dimensional dynamic system, a

fact that renders qualitative phase diagram analysis basically impossible and prevents the appli-

cation of Oniki’s (1973) method of comparative statics. Consequently, the available qualitative

discussion of the health-capital model focussed on models with constant δ (Eisenring, 1999;

Meier, 2000; Forster, 2001).6

6Ehrlich and Chuma (1990) did not mention that they made this simplifying assumption in order to derive
the comparative statics of their model (Table 3). But Oniki’s method, which they apparently apply, requires the
reduction to a two-dimensional system; see also Eisenring (1999).
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Figure 2: Eternal Life is Inescapable (Grossman)
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Ċ = 0
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Ċ = 0
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The introduction of age-dependent health depreciation, δ(t) entails also methodological prob-

lems. The question arises how exactly the function is to be specified. Insofar as one does not

get this choice right the resulting model will represent an inaccurate description of the aging

process. More importantly, the implied notion that chronological age matters to aging per se is

seen as deeply problematic from the biological perspective on aging. Biologists emphasize the

distinction between biological and age and calender age, i.e. that aging has a molecular structure

and it is not tied to a clock or calender. The main research goal is to get an explanation of aging

independent from calender time (Arking, 2006).

Most disconcerting is perhaps that the introduction of age-dependent health depreciation only

seemingly solves the problem of inescapable eternal life. In order to see this conveniently, it is

helpful to imagine the increase of δ in discrete steps (say, yearly deterioration of the depreciation

rate). Diagrammatically, an increasing δ can then be captured by an increasing slope of both

isoclines. This means that as the individual ages the fixed point moves to the left. Figure 3

returns to the case of an upward sloping Ċ = 0-isocline and draws the movement to the left for

one incremental increase of δ. Grey curves show the initial situation. Notice that the equilibrium

of eternal life does not disappear. It just occurs at a lower state of health, H∗∗. It is tempting

to argue that eternal life eventually disappears when the fixed point falls below Hmin. However,

this line of reasoning violates Assumption 1: the health capital stock at death would be higher

than the health capital stock that enables eternal life.
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It can be argued that the trouble with the health-capital model originates from the very

notion of “health capital” itself. The health-capital model inadvertently assumes that of two

individuals of the same age and different health, the healthier one loses more health through

health depreciation in the next period (or instant). Notice that this assumption is also main-

tained with age-dependent health depreciation, i.e. for any given age t: δ(t)H1(t) > δ(t)H2(t)

when H1(t) > H2(t). Diagrammatically, the assumption causes the arrows of motion for health

to point to lower health when the state of health is good (to the right of the Ḣ = 0-isocline)

and to better health at a state of bad health (to the left of the Ḣ = 0-isocline). The arrows of

motion thus always point towards the fixed point of eternal life. These worrying results are a

consequence of a notion of health that is exclusively held within the profession of economists and

that finds no support in gerontology. Gerontology, in contrast, finds a strong positive path de-

pendence of health deficits, i.e. in Grossman’s terminology it finds a strong negative association

between the state of health and the loss of health (Mitnitski et al, 2002, 2005, 2006).

3.2. Health Deficit Accumulation. As explained in Section 2 the health-deficit model con-

ceptualizes human life histories as a sequence of accumulated health deficits. Neglecting an

environmental constant and focussing, as for the health-capital model, on constant returns of

health investment, health deficits evolve according to (14).7

Ḋ = µ(D −AI). (14)

As explained above, µ is the force of aging as estimated in gerontology. The parameters A con-

trols the state of the health technology, as in the health-capital model. Investment in health care

delays the “natural” accumulation of deficits through maintenance and repair. The individual

life (after puberty) starts out with D(0) = D0 deficits and ends when Dmax ≥ D0 health deficits

have been accumulated.

In order to get health into the utility function in analogous way to the health-capital model

we define the state of best health H̄ as the absence of any health deficits and assume that utility

declines with increasing appearance of health deficits. Instantaneous utility is thus given by

U(C,D) =

[
Cα(H̄ −D)1−α]1−σ − 1

1− σ (15)

7The environmental constant is important for fitting the model to historical data but neglecting it is incon-
sequential for the mechanics of the model and alleviates the comparison with the health-capital model.
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for D < H̄ and U(C,D) = 0 otherwise. The normalization of zero utility when health deficits

fall below H̄ and individuals have “zero health” is arbitrary and could be altogether avoided by

assuming H̄ > Dmax.8 Analogously to the health-capital case we make the following assumption.

Assumption 2. Health deficits at death are larger than the stock of health deficits which would

guarantee eternal life, Dmax > D∗.

Individuals maximize lifetime utility max
∫ T

0 U(C,D)e−ρtdt by the appropriate choice of health

investment, given (14), the boundary conditions and the budget constraint (4). The associated

Hamiltonian is J =
[Cα(H̄−D)1−α]

1−σ−1

1−σ +λD (µD − µAI), in which λD denote the value of health

deficits. The first order conditions for a maximum are:

∂J

∂I
=
α
[
Cα(H̄ −D)1−α]1−σ − 1

C
(−p)− λDµA = 0 (16)

∂J

∂H
=

(1− α)
[
Cα(H̄ −D)1−α]1−σ − 1

H
· (−1) + λDµ = λDρ− λ̇D. (17)

The optimal solution furthermore fulfils the transversality condition

J(I(T ), D(T ), λD(T )) = 0 for finite T

lim
T→∞

J(I(T ), D(T ), λD(T ))e−ρT = 0 or lim
T→∞

λD(T )D(T )e−ρT = 0.

if a fixed point exists.

We eliminate λD and λ̇D by time-differentiating (16) and summarize the two equations in

one equation of motion for consumption, (18). Inserting the budget constraint (4) into (14)

expresses the equation of motion for health deficits in terms of goods consumption, (19).

Ċ

C
=

1

1− α(1− σ)

{
(1− α)µA

αp

C

(H̄ −D)
− (ρ− µ)− (1− α)(1− σ)

Ḋ

(H̄ −D)

}
(18)

Ḋ = µD − µA(Y − C)

p
. (19)

The optimal life cycle trajectory is described by the dynamic system (18)–(19) and the transver-

sality condition. Observe from (18) that ∂Ċ/∂C > 0 (when Ḋ = 0) such that the arrows of

motion point towards higher consumption above the Ċ = 0-isocline, as in the health-capital

8It is easily imaginable that utility actually gets negative when health deficits get large enough, a situation
under which the individual would prefer euthanasia. For simplification, and to keep symmetry with the health-
capital model, this interesting case is neglecting subsequently.
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model. Observe from (19) that ∂Ḋ/∂D > 0. The arrows of motion are thus pointing away from

the Ḋ = 0-isocline. This feature follows directly from the law of health deficit accumulation (14)

and provides the most distinguishing feature of the health-deficit model. Individuals with many

health deficits develop even more health deficits in the next instant than healthy individuals.

From (18) and (19) the isoclines for constant consumption and health deficits are obtained as:

C =
αp

(1− α)µA [1− α(1− σ)]

[
(ρ− µ)H̄ − {ρ− µ [1 + (1− α)(1− σ)]}D − (1− α)(1− σ)µ

AY

p

]
(20)

C = Y − p

A
D. (21)

From (20) we see that at the steady state, (1−α)µAC/(H̄−D) = (ρ−µ)αp. The left hand side

of the equation is strictly positive, implying that ρ > µ is a necessary, not sufficient condition

for a steady state of eternal life to exist. The condition is not sufficient because consumption

at the intersection of the isoclines could be negative such that no positive steady state exists.

Specifically, the intersection of the isoclines is obtained from (20) and (21) as

C∗ =
αρ− µ
α(ρ− µ)

· A

AY − pH̄ , D∗ = H̄ − (1− α)µA

αp(ρ− µ)
C∗. (22)

Notice that for αρ > µ consumption is positive at the intersection of the isoclines only if

AY > pH̄. This means that one can always find an A or Y low enough such that no positive

intersection exists. In other words, eternal life does not exist if medical technology or income

are assumed to be sufficiently low.

Altogether we have to distinguish three cases: (i) the isoclines intersect in the positive quad-

rant (a steady state of eternal life exists), (ii) the isoclines intersect at a negative value for

consumption, (iii) no intersection. Figure 3 shows the first two cases, obtained for ρ > µ. The

panel on the left side shows the case in which a fixed point of eternal life, characterized by

constant health deficits D∗, exists. As indicated by the arrows of motion, the fixed point is

globally unstable. In contrast to the health-capital model, there exists no life trajectory leading

to eternal life. If people start out with more health deficits than tolerable for eternal life, con-

sumption is monotonously declining as more health deficits are accumulated, as shown by the

path from D0 to Dmax in the diagram. Otherwise, there might be an initial increasing branch

of consumption. In any case, consumption is declining late in life, meaning that – in contrast to

the health-capital model – health expenditure is increasing with declining health.
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Figure 3: Health Deficit Accumulation and Consumption (ρ > µ)
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Ḋ = 0

D0 DmaxD∗

C

Y

D
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The panel on the right hand side of Figure 3 shows the case in which there exists no positive

steady state because income is too low or health technology is too weak to allow for an eternal

life. The isoclines intersect at D̃ in the negative quadrant. For D0 > D̃, health deficits are

increasingly accumulated with age and consumption declines, implying that health expenditure

increases with declining health. Death in any case is the constraint optimal solution because

income and technology do not (yet) allow for an eternal life. These features are a natural

consequence of the modeling of health deficits as suggested by gerontologists. It is not necessary

to introduce a third state variable that moves the Ḋ–isocline with age. Age as such is not a

determinant of health.

Figure 5 shows the phase diagram when ρ < µ, i.e. when the isoclines do not intersect.

The Ċ = 0–isocline hits the ordinate at C1 < C2 and thus lies everywhere below the Ḋ = 0-

isocline. Figure 4 thus shows the unique way to draw the case of ρ < µ. Interestingly, increasing

health deficit accumulation is now associated with increasing consumption, i.e. declining health

expenditure. The result, though perhaps unexpected, is intuitive. When ρ < µ, the time

preference is smaller than the rate at which the body deteriorates. Consequently, it is optimal

to make most health investments early in life and consume more at a later stage. Depending

on parameter choice the model is thus capable to explain both increasing and declining health

expenditure patterns.
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Figure 4: Health Deficit Accumulation and Consumption (ρ < µ)

D
Ċ = 0
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In a more general version of the model (Dalgaard and Strulik, 2014) we integrate access to

the capital market. Then, ρ is replaced by rate of return on capital investment r and individuals

optimally chose a declining health investment trajectory when r < µ. Again, the result is

intuitive. If the rate of return on savings is smaller than the rate of bodily deterioration, it is

optimal to invest in health early in life. On the other hand, for r > µ, it is optimal to delay most

health investments to later stages of life and save at young age for the large health expenditures

expected in old age. Empirically, the force of aging is precisely estimated to be between 3 and

4 percent (Mitnitski et al., 2002). A long-run interest rate of around 6 percent as suggested

by the historical record (Siegel, 1992) would then explain the more frequently observed case of

increasing health expenditure with age.

4. Health and Productivity

4.1. Health-Capital Model. We next turn to the “pure investment model”, i.e. we assume

that, aside from its impact on longevity, health expenditure exerts a positive effect on produc-

tivity. According to Grossman’s original version , productivity is a function of an individual’s

production of healthy time and sick time, which are functions of health capital. For simplicity,

we consider here a “reduced form” approach in which productivity and thus income is a strictly

concave function of an individual’s health status. This does not change the basic mechanism of

the model and has the convenient side effect that the model becomes structurally equivalent to

the neoclassical growth model. Since this textbook model is basically known by every economist,
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the transitional dynamics are particularly easy to convey. Specifically we assume that income is

given by

Y = θHα, (23)

in which α controls the return to health in terms of productivity, 0 < α < 1.

Following the tradition in the literature we now ignore consumption aspects of health such

that life time utility is given by ∫ T

0
U(C)e−ρtdt (24)

with U(C) = (C1−σ − 1)/(1− σ) for σ 6= 1 and U(C) = log(C) otherwise. Individuals maximize

(24) subject to (23) and (4) and (5), obeying the boundary conditions H(0) = H0 and death

happens at t = T when H(T ) ≤ Hmin, as before. The first order conditions for a maximum are

C−σ = λHA/p (25)

λD

(
A

p
θαHα−1 − δ

)
= λHρ− λ̇H , (26)

in which λH is the shadow price of health. Additionally the optimal solution fulfils the transver-

sality condition (9). Equation (25) equates the return from health investment on the right hand

side with the opportunity cost in terms of forgone utility from consumption. Equation (26)

shows that the productivity effects of health lead to a less steeply optimal increase of shadow

price of health. Proceeding as in Section 3.1 we obtain from the first order conditions an equa-

tion of motion for consumption (27), which together with the equation of motion for health

capital (28) constitutes the dynamic system:

σ
Ċ

C
=
A

p
θαHα−1 − (δ + ρ) (27)

Ḣ =
A(θHα − C)

p
− δH. (28)

Setting for a moment H = K and A = p = 1, it becomes evident that the model is structurally

identical with the neoclassical growth model (e.g. Barro and Sala-i-Martin, 2005, Chapter 3).

Since transitional dynamics for this type of model are well-known, the discussion can be brief.

From (27) and (28) we observe a unique steady state of eternal life at

H∗ =

[
αθA

p(δ + αρ)

] 1
1−α

, C∗ = θ(H∗)α − αp

A
H∗. (29)
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Figure 5: Investment Model (Health Capital Accumulation)

H
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Observe from (27) that the Ċ = 0-isocline is a horizontal line through H∗ and that ∂Ċ/∂C < 0

for H > H∗ such that the arrows of motion point towards the isocline. From (28) the Ḣ = 0-

isocline is given by the concave curve C = f(H) = θHα − αpAH/A and ∂Ḣ/∂C < 0 . The

arrows of motion point towards lower health above the isocline and towards better health below

the isocline.

Figure 5 shows the famous phase diagram, which is known (albeit with capital K at the axis)

from the textbooks on economic growth. The health isocline is intersected by the consumption

isocline before it reaches its maximum.9 The intersection identifies the unique steady state of

eternal life. The steady state fulfils the transversality condition (9c) since health and consump-

tion and thus the shadow price of health are constant. This means it is optimal from any initial

endowment of health capital to converge towards eternal life. However, if a researcher ignores

this result and enforces convergence towards a terminal state of health Hmin, then consumption

is increasing, as shown by path B, implying that the health expenditure share declines as health

deteriorates.

As for the “pure consumption” model, the introduction of an age-dependent depreciation

would only seemingly solve these problems. Diagrammatically, it would shift the consumption

isocline and thus H∗ to the left. But the steady state of eternal life continues to exist and it

remains optimal to converge to it. Only if H∗ falls below Hmin, death occurs. But this situation

9In order to see this, compute from f ′(H) = 0 the maximum of the isocline at Hmax = [αθA/(αp)]1/(1−α and
observe Hmax < H∗.
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violates Assumption 1. Death occurs at a health capital stock that is larger than the one needed

for eternal life. In summary, the investment-variant of the health-capital model displays all the

troubling features of the health-consumption variant.

4.2. Health Deficit Accumulation. In order to maintain the comparability with the health-

capital model we again define a state of best health H̄, at which human productivity is largest.

It is achieved in the absence of any health deficits. Analogously to the health-capital model,

individual income is given by

Y = θ(H̄ −D)α (30)

for D < H̄ and Y = 0 otherwise. As for the health-capital case, individuals maximize lifetime

utility from consumption (24). They face the equation of motion for health deficits (14), the

budget constraint (4), productivity according to (30) and the initial health deficits D(0) = D0.

They die at time T when D exceeds Dmax. In the following we focuss on the case where H̄ > D

such that health actually matters for productivity.10 The first order condition for maximizing

the associated Hamiltonian are:

C−σ + λDA/p = 0 (31)

λD

[
µ+ µ

A

p
αθ(H̄ −D)α−1

]
= λDρ− λ̇D (32)

As before, the first order condition can be reduced to an equation of motion for optimal

consumption (33). Inserting income (30) into (14) provides the equation of motion for health

deficits (34) such that the optimal life trajectory fulfils (33)–(34) and the transversality condition.

σ
Ċ

C
= µ− ρ+ µ

αθA

p
(H̄ −D)α−1 (33)

Ḋ = µD − µA
p

[
θ(H̄ −D)α − C

]
. (34)

Setting the left hand side of (33) to zero we obtain the consumption isocline as horizontal line

through D1 with

H̄ −D1 =

[
µαθA

(ρ− µ)

] 1
1−α

. (35)

Since H̄ − D > 0 for health to matter and for income to be positive, ρ > µ is a necessary

assumption for the isocline to exist. From (33) we see that ∂Ċ/∂D > 0 such that the arrows of

10Otherwise we would obtain σ̇C/C = µ− ρ independently from the state of health and Ḋ = µ(D −AC/p).
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motion point towards higher consumption at the right hand side of the isocline. From (34) we

obtain the Ḋ = 0-isocline as

C = θ(H̄ −D)α − p

A
D. (36)

From (34) we have again that ∂Ḋ/∂D > 0 such that the arrows of motion point away from the

isocline. The isocline cuts the D-axis at D2, which is implicitly given by

H̄ −D2 =

(
pD2

Aθ

)α
. (37)

The intersection is thus at some D lower than H̄, i.e. in the relevant range where health matters

for productivity.

The intersection of the isoclines identifies a fixed point. Similar to the health-consumption

case, the fixed point may be in the positive quadrant, such that a steady state of eternal life

exists, or in the negative quadrant such that no steady state exists. Figure 6 shows both cases.

The panel on the left hand side shows the case where the fixed point is located in the positive

quadrant. It is identified as a saddlepoint. However, in contrast to the health-capital model,

eternal life cannot be approached from everywhere. If the initial endowment of health deficits

D0 is larger than D2, eternal life is not an option. Increasing health deficit accumulation is

associated with more consumption and thus less health expenditure as, for example, along the

trajectory A. This outcome however could be avoided by assuming a sufficiently low state of

the health technology.

The panel on the right hand side of Figure 6 shows the case when no steady state of eternal

life exists, which is observed when D2 < D1. In this case, one can always find a life time

trajectory along which individuals consume less as their health deteriorates as, for example,

along trajectory B. This does not necessarily imply that health expenditure in absolute terms

rises since income, due to deteriorating health, declines. But it unambiguously implies that

the health expenditure share rises with declining health. Most importantly, we can always find

a health technology weak enough such that eternal life is impossible. To see this, compute

∂D1/∂A < 0 from (35) and ∂D2/∂A > 0 from (36). This means that, as the state of medical

technology declines, D1 shifts to the right and D2 shifts to the left. Currently it is safe to assume

that eternal life cannot (yet) be approached. The situations is thus characterized by sufficiently

low medical technology such that the panel on the right hand side of Figure 6 is the relevant

one.
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Figure 6: Health and Productivity (Health Deficit Accumulation)
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5. Conclusion

This paper has demonstrated that assumptions matter in the economics of health demand

and longevity. It makes sense to listen to doctors and natural scientists in order to get health

depreciation right. The health-capital theory and the health-deficit theory lead to fundamen-

tally different predictions concerning longevity and the optimal age-health expenditure profile.

The health-capital theory predicts that humans are immortal, irrespective of their initial condi-

tions. Ignoring this prediction leads to the prediction that health expenditure declines as health

deteriorates. The health-deficit model, in contrast suggest that one can always find a health

technology low enough and an income level low enough such that immortality does not exists.

The theory predicts that health expenditure usually increases as health deficits decline but al-

lows as well, given certain parameters of the utility function, for a declining health expenditure

pattern.

The crucial difference is that dynamics of the health-capital model by construction lead to-

wards lower health H when the health stock exceeds its equilibrium value and towards better

health when the health stock is below equilibrium. Self-equilibriating forces lead towards the

fixed point of eternal life. Given the genesis of the model this outcome should not be surpris-

ing. The health-capital model was inspired by the human-capital model, which was inspired

by the (neo-classical) growth model of physical capital accumulation. In neoclassical growth
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theory, inherent stability of the steady state was a desirable feature. But, as discussed by Mc-

Fadden (2008), different stocks of capital follow different depreciation patterns and a reasonable

modeling for physical capital constitutes not automatically a reasonable modeling for human

health.

In contrast, dynamics of the health-deficit model lead away from a state of constant health.

The reason is that the health-deficit model captures a fundamental insight of modern gerontology,

namely that the speed of health deficit accumulation is a positive function of the health deficits

that an individual already has.

This paper has compared simple versions of the two theories in order to allow for general

inferences from phase diagram analysis. It is conceivable that amendments of the health-capital

model exist that help avoiding its worrisome predictions. Yet, by introducing sufficiently many

degrees of freedom any model can be perfectly fitted to the data. The goal for (health) economists

should be to explain a lot by imposing only a little, another desirable feature of a good theory

according to Friedman’s (1953) methodology. We believe that the health-deficit theory fulfils

this criterion. The main driving force of the theory is given by one single parameter, µ, the force

of aging. The natural sciences provide precise estimates of the size of this parameter for men

and women of different populations. For the health economists there are thus few degrees of

freedom to ‘manipulate’ the theory. Instead, non-counterfactual predictions follow from simple

principles of human gerontology.
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Appendix: Robustness with Respect to Declining Returns of Health Investment

The main text has for simplicity focussed on linear returns to health investment. Taking into

account that returns are potentially decreasing adds more realism to the model but it does not

affect the central mechanism. The distinct adjustment dynamics of the two health models are

driven by the assumption that according to Grossman healthier paper lose more health while

according to Dalgaard and Strulik unhealthier people accumulate more health deficits. The core

dynamics are independent from the specific health investment function. In order to verify this

claim we focus on the health-consumption variant and furthermore on the case of σ = 1, i.e. the

instantaneous utility function is U(C,H) = α logC + (1− α) logH.

5.1. Decreasing Returns in the Health-Capital Model. For the health-capital model the

equation of health capital accumulation (5) is rewritten as

Ḣ = AIγ − δH, (A.1)

with 0 < γ < 1. The individual maximizes life time consumption (3) given (A.1), the budget

constraint (4) and the boundary conditions. The associated Hamiltonian reads:

J = α logC + (1− α) logH + λH [AIγ − δH] .

From the first order condition and costate equation we obtain the equation of motion for optimal

consumption (A.2) and after inserting the budget constraint the equation of motion for health

capital is obtained as (A.3).

Ċ

C

(
1 + (1− γ)

C

Y − C

)
=

(1− α)γAC

αpγ(Y − C)1−γH
− (δ + ρ) (A.2)

Ḣ = A

(
Y − C
p

)γ
− δH. (A.3)

Observe from (A.2) that the sign of ∂Ċ/∂C equals the sign of C(Y − C)γ−1| ∂∂C and thus

∂Ċ/∂C > 0. The arrows of motion for consumptions point away from the Ċ = 0-isocline. From

(A.3) we observe that ∂Ḣ/∂H < 0. The arrows of motion for health capital point towards the

Ḣ = 0-isocline. As obtained for the linear model, this central feature of the health-capital model

implies again saddlepoint stability of the fixed point of eternal life.
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Setting Ċ/C = 0 in (A.2) we cannot explicitly solve for the isocline C(H). But we can solve

H to get the inverse function H(C):

H =
(1− α)γAC

αpγ(Y − C)1−γ(δ + ρ)
. (A.4)

It is a strictly concave curve through the origin. The Ḣ = 0-isocline is obtained from (A.3) as

C = Y − p
(
δH

A

) 1
γ

. (A.5)

It is a monotonously falling curve originating from C = Y . Thus there exists a unique intersec-

tion of the isoclines as shown in Figure A.1. The arrows of motion identify the fixed point H∗

as saddlepoint. Notice that the fixed point is approached from everywhere (for any initial con-

dition) and for any set of parameter values (income, health technology, etc). Analogously to the

analysis of the linear investment model it is verified that the fixed point fulfils the transversality

condition (9c). It is optimal to live forever. However, if one would ignore this result, the phase

diagram also reveals that any trajectory of declining health and terminal health lower than H∗

(any trajectory fulfilling Assumption 1) implies that consumption rises, i.e. health expenditure

declines, as individuals are getting unhealthier. The model replicates the main shortcomings of

the linear investment model from the main text.

Figure A.1: Declining Returns to Health Investment (Health Capital Accumulation)
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Figure A.2: Declining Returns to Health Investment (Health Deficit Accumulation)
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5.2. Decreasing Returns in the Health-Deficit Model. The associated Hamiltonian for

the health-deficit model reads

J = α logC + (1− α) log(H̄ −D) + λD [µD − µAIγ ] .

From the first order condition and costate equation we obtain the equation of motion for optimal

consumption (A.6) and after inserting the budget constraint the equation of motion for health

deficits is obtained as (A.7).

Ċ

C

(
1 + (1− γ)

C

Y − C

)
=

(1− α)γAC

αpγ(Y − C)1−γ(H̄ −D)
+ (µ− ρ) (A.6)

Ḋ = µD − µA
(
Y − C
p

)γ
. (A.7)

Notice that in (A.6) the term on the left hand side and the first term on the right hand side

are both positive. Thus there exists no steady state of eternal life for µ > ρ. As above, the sign

of ∂Ċ/∂C equals the sign of C(Y − C)γ−1| ∂∂C and thus ∂Ċ/∂C > 0. The arrows of motion for

consumptions point away from the Ċ = 0-isocline. From (A.7) we observe that ∂Ḋ/∂D > 0.

The arrows of motion for health deficits point away from the Ḋ = 0-isocline.

Again, we cannot explicitly solve for the consumption isocline C(D). But setting Ċ/C = 0 in

(A.6) we can solve for D to get the inverse function D(C):

D = H̄ − (1− α)µγAC

αpγ(Y − C)1−γ(ρ− µ)
. (A.8)
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Consider the case ρ > µ, i.e. the necessary condition for a steady state to exist. Then the isocline

has negative slope with ∂D/∂C → −∞ for C → 0. The Ḣ = 0-isocline is obtained from (A.7)

as

C = Y − p
(
D

A

) 1
γ

. (A.9)

It is a monotonously falling curve originating from C = Y . Thus there exists a unique intersec-

tion of the isoclines as shown in Figure A.2. The arrows of motion identify the fixed point D∗

as globally unstable. No life trajectory leads to immortality. A plausible trajectory is shown in

Figure A.2. Deteriorating health (increasing health deficits) are observed together with falling

consumption, i.e. increasing health care expenditure.
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