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Abstract. This paper provides a unified growth theory, i.e. a model that explains the

very long-run economic and demographic development path of industrialized economies,

stretching from the pre-industrial era to the present-day and beyond. Making strict use of

Malthus’ (1798) so-called preventive check hypothesis – that fertility rates vary inversely

with the price of food – the current study offers a new and straightforward explanation for

the demographic transition and the break with the Malthusian era. Employing a two-sector

framework with agriculture and industry, we demonstrate how fertility responds differently

to productivity and income growth, depending on whether it emerges in agriculture or

industry. agricultural productivity and income growth makes food goods, and therefore

children, relatively less expensive. Industrial productivity and income growth, on the

other hand, makes food goods, and therefore children, relatively more expensive. The

present framework lends support to existing unified growth theories and is well in tune

with historical evidence about structural transformation.
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1. Introduction

Over the past two centuries, a so-called Malthusian era, represented by stagnant standards

of living and a positive relationship between income and fertility, has gradually been replaced

by a so-called Modern Growth era, which in turn is marked by sustained economic growth and

declining rates of fertility (a demographic transition). Building on seminal work by Galor and

Weil (2000), several attempts have been made to try to merge the two eras, and to identify

the underlying causes of the demographic transition. An incomplete list of studies includes

Boucekkine et al. (2002, 2007), Doepke (2004), Galor and Moav (2002), Galor and Mountford

(2008), Hansen and Prescott (2002), Jones (2001), Kögel and Prskawetz (2001), Lucas (2002),

Strulik (2003), Tamura (2002), and Weisdorf (2004).

Common to so-called unified growth theories is a complex apparatus, offered to motivate the

profound shift in human fertility behavior associated with the demographic transition. The

story of the fertility drop differs with the specific theory, but the gradual rise in the demand

for human capital ‘has led researchers to argue that the increasing role of human capital in

the production process induced households to increase investment in the human capital of their

offspring, ultimately leading to the onset of the demographic transition’ (Galor, 2005).

The current paper offers a new and straightforward explanation for the demographic transition

and the break with the Malthusian era – a theory which nicely complements ideas proposed in

existing unified growth theories. More specifically, we provide an endogenous growth model

which is consistent with the (stylized) development path of industrialized countries but does not

rely on human capital accumulation as the driving force behind the demographic transition.

In the existing literature, a trade-off between child quantity and quality ultimately serves

to generate a drop in fertility along with rising incomes. Fertility behavior in the present

context, by contrast, relies entirely on Malthus’ so-called preventive check hypothesis – that the

tendency to matrimony, and thus implicitly the desire to give birth to children, is negatively

correlated with the price of food (Malthus, 1798). The absence of a quality-quantity trade-off in

the current paper eliminates the need of complex theoretical mechanisms hitherto required to

explain the demographic transition and renders a fairly simple unified growth theory compared

to the modelling so far proposed.

Employing a two-sector framework (with agricultural and industry), economic growth in the

context of the present model derives from two sources. One is structural transformation in
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the form of labor being transferred from agriculture to industry. More specifically, agrarian

productivity growth in conjunction with Engel’s law (which states that the proportion of income

spent on food falls as income rises) increases the share of labor allocated to industry and therefore

raise the industrial sector’s output without affecting the performance of the agricultural sector.

The other source of growth derives from learning-by-doing in the production processes.

In brief, the development path proposed by the current theory can be described as follows.

During early stages of development, the population size is relatively small; the share of labor

employed in agriculture is relatively high; and standards of living are relatively close to sub-

sistence. Because of a limited population size, learning-by-doing effects, to begin with, are

relatively small. Hence, the agricultural sector’s productivity growth is slow, yet faster than

that of industry in which labor resources, and thus learning-by-doing effects, are even smaller.

Productivity growth in agriculture has two effects on development. On the one hand, higher

productivity growth in agriculture relative to industry makes food, and therefore children, rela-

tively less expensive; this raises fertility and gradually speeds up the rate of population growth.

On the other hand, agricultural productivity growth, in combination with Engel’s law, increases

the share of labor allocated to industrial activities.

With learning-by-doing effects at work in both agriculture and industry, the transfer of labor

out of agriculture gradually shifts the ratio of productivity growth in favor of industry. Sooner or

later, therefore, the rate of the industrial sector’s productivity growth surpasses that of agricul-

ture. Subsequently, industrial goods are becoming affordable at relatively lower prices, implying

that food, and therefore children, become relatively more expensive. Henceforth, fertility de-

clines, and the rate of growth of population slows down, until population growth eventually (en-

dogenously) comes to a halt. The model thus captures a non-monotonic (i.e. inverse u-shaped)

pattern of fertility observed, for example, for England.

The current theory emphasizes two important features connected to the release of agricultural

labor as a source of long-term economic growth. On the one hand, as the analysis below will

clarify, a transfer of labor out of agriculture can persist for many (i.e. hundreds of) years before

ultimately leading to substantial economic growth, a point often stressed by economic historians.

As such, the industrial revolution in the present context is not a sudden break with the past,

but a gradual outcome of long-standing processes taking place throughout the Malthusian era.

On the other hand, as the analysis below will also establish, a slowdown of economic growth
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will eventually occur, as the beneficial effects of structural transformation gradually become

exhausted.

The paper continues as follows. Section 2 describes the basic model, Section 3 explores dy-

namics and stability conditions, and Section 4 performs a quantitative analysis, highlighting the

long-run development path predicted by the model. Section 5 looks at some empirical evidence

related to the model’s main predictions, and Section 6 discusses extensions and generalizations

of the theoretical framework. Finally, Section 7 concludes.

2. The Model

2.1. Introduction. In the following, we describe the simplest version of our unified growth

theory, and we explain its main mechanisms and predictions. This version allows for a closed-

form solution for fertility. However, simplicity often entails some shortcomings. In a later

section, therefore, we discuss the shortcomings of the simple model, and we demonstrate, by

relaxing some of the initial assumptions, that the simple model can be generalized (although at

a cost to the closed-form solution for fertility), so as to account for these shortcomings.

To begin with, consider a closed economy with two sectors: an agricultural sector producing

food, and an industrial (i.e. non-agricultural) sector producing manufactured goods. Economic

activities extend over infinite (discrete) time denoted by t. We examine a two-period overlapping

generations economy with childhood and adulthood. Productive and reproductive activities

take place only during adulthood. For simplicity, reproduction is asexual, meaning that each

individual is born to a single parent. Individuals are identical in every aspect, and each adult

individual is endowed with one unit of labor, which is supplied inelastically to work.

Change in the size of the labor force (i.e. the adult population) between any two periods is

given by

Lt+1 = ntLt, (1)

where nt is the gross rate of growth of population. As we abstract from mortality, nt also

measures the rate of fertility in period t.

2.2. Preferences. The cause of the demographic transition in the current framework is to

be found in the interaction between differential productivity growth and parental preferences.

Individuals in the model maximize utility derived from the amount of offspring that they have,

nt, and from the number of manufactured goods that they consume, measured by mt.
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Suppose that individuals face a ‘hierarchy of needs’, so that having children (and feeding

them) is a first-priority activity, whereas enjoying manufactured goods comes in second. In

times of economic crises, this means that parents will adjust fertility relatively little compared

to the consumption of manufactured goods. Such a behavior implies that the elasticity of the

marginal utility is higher for children than for manufactured goods.

A convenient way of formalizing this is by making use of a so-called quasi-linear utility func-

tion, which can be written as

ut = mt + γ lnnt, (2)

with γ being the weight put on children.

Intuitively, the quasi-linear description provides the strongest form of a hierarchy of needs,

namely when the income-elasticity on the demand for children is zero. This implies that fer-

tility is affected not by income changes but by the relative costs of raising children (which, for

most of history, meant the relative price of food). Although the income-effect on fertility is

absent, hierarchic needs in the current form involve an indirect income-effect on the demand for

children. That is, combined with the labor market equilibrium condition below, productivity

(and therefore income) growth has an ambiguous effect on fertility: agricultural productivity

growth, by reducing the relative price of food, will increase fertility. Manufacturing productivity

growth, on the other hand, by increasing the relative price of food, will reduce fertility. As will

be demonstrated in Section 6, however, the quasi-linear ‘zero-income-effect’ preferences are not

essential for the qualitative nature of the results obtained below.

To obtain the budget constraint, suppose that an individual, over the course of a lifetime,

consumes a fixed quantity of food (i.e. calories), measured by a. For simplicity, food is demanded

only during childhood, and some of it then stored for adulthood.1 The price of manufactured

goods is set to one, so pt denotes the price of food, measured in terms of manufactured goods

(i.e. the relative price of food). By setting a ≡ 1, it follows that each child consumes one unit of

food.2 This means that the total costs of raising nt children, measured in terms of manufactured

goods, is ptnt. The individual budget constraint thus reads

ptnt + mt = wt, (3)

1It will not affect the qualitative nature of the results, if, instead, the individual’s food demand where to be
divided over two periods.
2In Section 6, we relax this assumption by letting child (and thus food) expenditures increase with rising income.
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where wt is the income of a representative individual, also measured in terms of manufactured

goods.

The solution to the optimization problem implies that the demand for children is given by

nt =
γ

pt
. (4)

Consistent with Malthus’ (1798) preventive check hypothesis, the price-effect on the demand for

children is negative. However, although there is no direct income-effect on fertility, an indirect

income-effect will ultimately enter through the relative price of food, as will become apparent

below.

In the existing literature, fertility responds directly to a change in productivity and thus in

the demand for human capital. In the present study, fertility responds to a change in the relative

price of food. In turn, the price of food can be affected by sectoral shifts, such as labor leaving

agriculture in favor of industry. This means that such structural transformations may account

for changes in fertility. In accordance with stylized historical facts proposed by Crafts (1996)

and Voth (2003), therefore, the present work is well in tune with the idea that persistent (and

rapidly shifting rates of) population growth went on during early phases of industrialization,

where income per capita was largely stagnant but when substantial structural transformation

took place.

2.3. Production. In line with existing unified growth theories, agricultural production is sub-

ject to constant returns to labor and land, the latter being measured by X. Land is in fixed

supply, and the total amount is normalized to one (i.e. X ≡ 1). Industrial production is subject

to constant returns to labor, implying, as is also common in the related literature, that land is

not an important factor in manufacturing.3

Inspired by Matsuyama (1992) and Strulik (1997), new technology in each of the two sectors

appears as a result of learning-by-doing. More specifically, output and new technology in the

respective sectors are produced according to the following production functions:

Y A
t = µAε

t(L
A
t )α = At+1 −At, 0 < α, ε < 1 (5)

Y M
t = δMφ

t LM
t = Mt+1 −Mt, 0 < φ < 1. (6)

3In Section 6, we demonstrate that assuming diminishing returns-to-labor in manufacturing does not affect the
qualitative results presented below.
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The variable At is total factor productivity in agriculture (superscript A for agricultural goods),

and the variable Mt measures total factor productivity in industry (superscript M for manufac-

tured goods). With 0 < ε, φ < 1, there are diminishing returns to learning in both sectors. In

order to simplify the exposition the advancement in technology is equal precisely to the output

produced. The qualitative analysis would not be affected if technological advancement through

learning-by-doing were described by any other strictly monotonous function of output. As is not

uncommon in the related literature, we abstract throughout from the use of capital in production

in both sectors.

Define gZ
t ≡ (Zt+1 − Zt) /Zt to be the net rate of growth of a variable Z between any two

periods. Then it follows that the net rate of productivity growth in the agricultural sector is gA
t ≡

µAε−1
t

(
LA

t

)α. Similarly, the net rate of productivity growth in industry is gM
t = δMφ−1

t LM
t .

2.4. Equilibrium. Together, the variables LA
t and LM

t measure total labor input in agriculture

and industry, respectively. They therefore fulfil the condition that

LA
t + LM

t = Lt. (7)

The share of total labor devoted to agriculture is determined by the food market equilibrium

condition. This condition says that total food supply, Y A
t , equals total food demand, which

(when each person consumes one unit of food) is ntLt. Using (5), the food market equilibrium

condition implies that the share of farmers to the entire labor force is given by

θt ≡
LA

t

Lt
=

(
ntL

1−α
t

µAε
t

) 1
α

. (8)

Note that productivity growth in agriculture releases labor from the agricultural sector, whereas

population growth has the opposite effect.

Consistent with existing unified growth theories, we assume that there are no property rights

over land, meaning that the land rent is zero. This implies that labor in both sectors receives the

sector’s average product. The labor market equilibrium condition implies that the relative price

of food adjusts, so that farmers and manufacturers earn the same income, i.e. wt = ptY
A
t /LA

t =

Y M
t /LM

t . By the use of (4)-(8), this means that the relative price of food is given by

pt =

(
δMφ

t

)α
(γLt)

1−α

µAε
t

. (9)
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Note that the relative price of food increases with productivity advances in industry and with

the size of the population. Productivity advances in agriculture, on the other hand, have the

opposite effect.

Finally, a second use of (4) in (9) provides the rate of fertility in a general equilibrium, and is

nt = µ
(γ

δ

)α Aε
t

Mαφ
t L1−α

t

. (10)

It follows that productivity growth in agriculture increases fertility, whereas productivity growth

in industry and population growth have the opposite effect.

3. Balanced and Unbalanced Growth in the Long-Run

In the following, we explore the balanced and unbalanced growth paths of the economy. Along

a balanced growth path, all variables grow at constant rates (possibly zero). According to (5),

the net rate of agricultural productivity growth is given by At+1/At−1 = µ(LA
t)α/A1−ε

t . Along

a balanced growth path, the left-hand-side is constant by definition, so the right-hand-side must

be constant as well. At the same time, the share of labor in agriculture must be constant,

implying that LA grows at the same rate as L. A constant growth of productivity in agriculture

thus implies that

1 + gA =
(
1 + gL

)α/(1−ε)
. (11)

From similar reasoning, it follows from (6) that a constant rate of growth of productivity in

manufacturing implies that

1 + gM =
(
1 + gL

)1/(1−φ)
. (12)

According to (10), the gross rate of growth of population can be written as

nt+1

nt
=

(
1 + gA

t

)ε(
1 + gM

t

)αφ
n1−α

t

⇒ 1 + gL
t+1 =

(
1 + gA

t

)ε (
1 + gL

t

)α(
1 + gM

t

)αφ
. (13)

Inserting (11) and (12) into (13), we obtain the equilibrium law of motion for population growth,

which is given by

1 + gL
t+1 =

(
1 + gL

t

)η
, η ≡ α +

αε

1− ε
− φα

1− φ
. (14)

Along a balanced growth path, the population grows at constant rate, i.e. gL
t+1 = gL

t = gL. This

leaves two possibilities: either (i) there is no population growth (i.e. gL = 0), meaning that the
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population level is constant, or (ii) there is positive or negative population growth (i.e. gL 6= 0),

meaning that the population level is constantly growing or shrinking.

The latter possibility applies only when the knife-edge condition η = 1 is fulfilled. Meanwhile,

stability of the balanced growth path requires that |η| < 1. Hence, not only does growth on the

knife-edge demand a very specific parameter constellation (cf. the definition of η). It also requires

that the economy starts off on the balanced growth path, and then remains there forever. Since

it is the transitional dynamics of the model that will be of interest, we will abstract from the

knife-edge case throughout.

As for the former possibility—that in which there is balanced growth but no population

growth—we can conclude, using (11) and (12), that balanced growth combined with no popula-

tion growth also means no productivity growth. In other words, if |η| < 1, then the economy will

ultimately reach a unique, stable balanced growth path, along which there is no (exponential)

economic growth.

This is a noteworthy result. Since positive population growth cannot persist forever (because

of a limited space), other long-run growth theories, such as Jones (2001), have to impose the

condition that population growth is zero over the long run (which ultimately also leads to a

zero rate of productivity growth as well). In the present context, by contrast, a stationary

population level over the long-run occurs endogenously. Specifically, population growth in the

current model ‘digs its own grave’ through the feedback-effect of productivity. The reason

is that productivity growth in manufacturing increases the relative costs of having children.

This slows down the growth of population, thus decelerating productivity growth for subsequent

generations. Eventually, therefore, the economy endogenously converges to a state of zero growth

in population and productivity. Meanwhile, as our numerical analysis will show below, the

transitional dynamics may indeed involve centuries of positive exponential growth before a zero

exponential growth path is eventually reached.4

While a balanced growth path involves a zero growth of population and income, an unbalanced

growth path, characterized by imploding or exploding growth, may in principle exist. In the

following, we explore the two cases of unbalanced growth, starting with the case of imploding

growth. Imploding growth implies perpetual negative population growth. That is, nt is smaller

4Of course, the model is capable of generation persistent economic growth if the central mechanism of prices on
fertility is disabled, for example through introduction of a minimum rate of fertility. This case is discussed in the
extensions part of the paper.
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than one, and Lt, therefore, is decreasing. It is easy to see that imploding growth is not an

option. This follows from the fact that gA
t and gM

t are bound to be non-negative, as ‘forgetting-

by-doing’ does not take place. With limL→0 gA = 0 and limL→0 gM = 0, we get from (10) that

limL→0 n = const./L1−α. As Lt converges to zero, nt goes to infinity—a contradiction to the

initial assumption of nt being smaller than one. Hence, there will be no imploding growth. From

an intuitive viewpoint, it is diminishing marginal returns-to-labor in agriculture (i.e. α < 1) that

prevents implosion. As the population decreases, agricultural productivity goes up. Food prices,

therefore, go down, causing fertility, and thus next period’s population level, to increase.

Explosive growth, on the other hand, cannot be ruled out if η > 1. In this case, the relative

price of food ultimately goes to zero, and fertility, therefore, to infinity. With increasing rates

of population growth, productivity growth in both sectors will grow hyper-exponentially, until

fertility reaches infinity in finite time. A sufficient condition for stability of the balanced growth

path, therefore, is that

ε < εcrit ≡
1− φ− α + 2αφ

1− φ + αφ
. (15)

This condition says that the learning elasticity in agriculture cannot be too large. If (15) is

violated, then the pace of growth of agricultural productivity, fueled by population growth, will

lead to ever falling food prices, speeding up further the growth of population.

Inspection of (15) reveals that the critical level of ε, i.e. εcrit, is decreasing in α and increasing

in φ. Intuitively, this means that, the larger are the counterbalancing forces of fixed land in

agriculture and learning-effects in manufacturing, the larger the learning-effects in agriculture

can be without leading to explosive growth.

The following proposition summarizes the considerations made above about balanced and

unbalanced growth.5

5It is worth emphasizing that ε < εcrit is a sufficient condition for stability. For its derivation, we have assumed
that both gA and gM evolve in neighborhood of their steady-state path, (11) and (12), respectively. The condition
could be relaxed, if the slowdown of population growth before the convergence to balanced growth appears
sufficiently fast. Our numerical example below will verify this claim. For intuition, re-inspect (13). Imagine
that adjustment dynamics imply that an ‘agricultural revolution’ occurs before an ‘industrial revolution’. That
is, consider a path along which gA

t , because of diminishing returns-to-labor, is already declining, whereas gM
t is

still on the rise. The resulting fact, that gA
t is converging to zero faster than gM

t , relaxes the stability condition
obtained from analytical considerations, which implicitly assumes that all growth rates are in the neighborhood
of a balanced growth path. To see this, consider the limited case of gA → 0 in (13). Stability would then ‘only’
require that α (1− φ) < 1, which is always fulfilled. To summarize, therefore, condition (15) is a sufficient, but
not a necessary condition to rule out explosive growth.
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Proposition 1. There exists a unique balanced growth path along which there is no popula-

tion growth and no (exponential) economic growth. If the learning elasticity in agriculture ε is

sufficiently small, i.e. if (15) is not violated, then there is no unbalanced growth in the long-run.

Note that Proposition 1 includes the possibility of a so-called ‘Malthusian’ trap. That is, there

are adjustment paths towards the balanced growth path, along which an ‘industrial revolution’

will not emerge. If the learning elasticity in agriculture is sufficiently small, then population

growth will ‘swallowed up’ agricultural productivity growth to such an extent that agricultural

progress cannot free up enough labor for learning, and thus productivity growth, in manufac-

turing to gain momentum.6

If, on the other hand, agricultural learning-effects can free up adequate labor resources for

manufacturing, then, eventually, the relative price of manufactured goods starts to decline,

and the economy will go through (i) a demographic transition (a fertility transition, strictly

speaking); (ii) a structural transformation whereby labor shifts from agriculture to industry;

and (iii) a temporary take-off of economic growth (an ‘industrial revolution’). Note, as is the

aim of unified growth theory, that these events will occur endogenously, i.e. in the absence of

exogenous shocks.

The latter line of events (and the absence of a Malthusian trap) seems to have characterized

Western-world countries in their transition from the pre-industrial era to the present day. In

the following, therefore, we explore in more detail the transitional dynamics of the model.

4. Adjustment Dynamics: Growth in the Middle Ages, Industrialization, and

the Productivity Slowdown

As a starting point, consider a pre-industrial, agricultural economy. That is, an economy

in which the population level is relatively small; the share of labor employed in agriculture is

relatively high; and the level of income per capita is relatively close to subsistence. Starting

with a relatively small level of population, learning-by-doing effects, to begin with, are relatively

small. Hence, the agricultural sector’s productivity growth is slow, yet faster than that of

industry, where labor input, and thus learning-by-doing effects, are even smaller.

6To see this, consider the case of ε→ 0 and start with θ0 → 1.
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Productivity growth in agriculture has two effects on development. On the one hand, higher

productivity growth in agriculture relative to industry makes food, and therefore children, rel-

atively less expensive; this raises fertility and gradually speeds up rates of population growth.

On the other hand, agricultural productivity growth, in combination with Engel’s law, increases

the share of labor allocated to industrial activities.

With learning-effects at work in both agriculture and industry, the transfer of labor out of

agriculture gradually shifts the ratio of productivity growth in favor of industry. Sooner or later,

therefore, the rate of the industrial sector’s productivity growth surpasses that of agriculture.

Subsequently, food, and therefore children, become relatively more expensive; fertility declines,

and population growth slows down, until it eventually comes to a halt.

Observe, using (9), how the size of elasticities (i.e. ε and φ) shapes the path of fertility. The

higher is ε, the stronger will be the economic impact on fertility increase during a take-off

phase of agriculture (an ‘agricultural revolution’). On the other hand, the higher is φ, the more

pronounced will be the fertility decline (the demographic transition) during a take-off phase of

industry (an ‘industrial revolution’).

In order to get a more exact picture of the adjustment dynamics, a calibration of the model

is done below.7 We calibrate the model such that it approximates the peak of the demographic

transition in England and the subsequent slowdown of productivity growth. We set parameter

values, so that population growth reaches its peak of 1.5 percent annually in the year 1875, and

so that total factor productivity (TFP) begins to slowdown in the year 1975, when it grows at

a rate of 2 percent annually.

For the benchmark case, we set the following parameters: α = 0.8, ε = 0.45, φ = 0.3, µ = 0.5,

δ = 1.5, and γ = 3.4. Start values are θ0 = LA
0 /L0 = 0.95, L = 0.014, A0 = 0.8. The start value

for M is obtained endogenously from M0 = (γ/(δθ0)1/φ. For better readability of the results, it

7Since we are simulating growth trajectories for a very simple model, our results will likely be inferior to those
of large-scale CGE models. Such studies, using multi-factor, multi-sector models, and taking many important
determinants into account (like capital accumulation, education, international trade, and energy production), are
bound to produce more precise results than our’s. In particular, it can be expected that our model makes large
approximation-errors at the end of the transition paths, when learning-by-doing effects level off, and because we
have neither capital accumulation, nor education, to foster growth. More humbly, our experiment is to explore
how much of economic and demographic history we can explain using are very simple unified growth model. See
Harley and Crafts (2000) and Stokey (2001) for large scale CGE modelling of the industrial revolution.
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Figure 1: Long-Run Dynamics
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Solid lines: benchmark case, dashed lines: higher preference for children: γ = 4.5 (instead of
3.4), otherwise benchmark parameters. From top to bottom the diagrams show population
growth, productivity growth in agriculture, productivity growth in manufacturing, income
per capita, and the labor share in agriculture (our measure of structural change).

is assumed that a generation takes 25 years (approximately the length of the fecundity period),

and we then translate generational growth rates into annual ones.8

8For individual experiments a spreadsheet containing our basic specification of the model can be downloaded from
http://kaldor.vwl.uni-hannover.de/holger/research/papers.php.
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Figure 1 demonstrates the adjustment path, running from the year 1200 on to the year 2200.

The solid lines show the path of the benchmark economy. The dashed lines concern an alternative

economy to be discussed further below.

To begin with, nearly the entire labor force is allocated to agriculture. In line with numbers

provided by Galor (2005), industrial productivity growth, initially, is almost completely absent,

while productivity growth in agriculture is around 0.15 percent annually. In the beginning,

agricultural progress, manifesting itself in a slowly decreasing relative price for food, is almost

entirely converted into population growth. Due to diminishing returns-to-labor in agriculture,

however, income per capita is hardly affected by the growth of productivity.

Due to learning-by-doing, population growth (in a Boserupian manner) furthers productivity

growth in agriculture.9 Over the subsequent years, agricultural productivity growth (because

the learning elasticity in agriculture in this case is sufficiently high) slowly builds up to reach 0.5

percent by the 18th century. By then, agriculture progress makes possible a substantial transfer

of labor into manufacturing, causing an upsurge in industrial productivity growth.10 By contrast

to agriculture, productivity growth in the industrial sector derives from two sources: population

growth and a transfer of labor from agriculture. From the turn of the 19th century onwards,

therefore, economic growth gains momentum.

Although productivity growth in industry is now gradually on the rise, its rate of growth

during the 19th century is still lower than that in agriculture. Consequently, the relative price

of food is still falling, causing further increase in fertility and population growth. Strikingly,

although substantial structural and demographic changes take place in the 19th century, major

improvements in standards of living, according to the model, do not appear before the 20th cen-

tury. This phase of adjustment dynamics is well in tune with the demo-economic observations

made in relation to England’s industrial revolution. As has been emphasized by economic histo-

rians such as Crafts (1996) and Voth (2003), a high rate of structural change and considerable

rates of population growth are accompanied by relatively low rates of economic growth.

In line with the empirical stylized facts, the fourth panel of Figure 1 shows that there is

relatively slow income-growth in the centuries preceding the industrial revolution, and only a

9See Boserup (1981) for a detailed exploration on how population growth drives agricultural progress.
10This outcome of the model is in line with the observation that the direct labor input to produce a ton of grain
– while staying almost constant for a long time in history – declined by 70 percent in the 19th century (Johnson,
2002).
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slight rise in income per capita during the initial phases of industrialization in the first half

of the 19th century (we have normalized y1875 = 100). Meanwhile, the Figure also reveals a

shortcoming of the model, and of its story of industrialization. From 1875 to 1990, income per

capita in the present model grows at a factor 2.5. In England, by contrast, income per capita

grew at a factor 5 (Maddison, 2001). This shortcoming can be explained by the neglect in the

present framework of human and physical capital accumulation, which are estimated to have

accounted for about half of the increase of income per capita in industrialized countries.

In order to keep track of the relationship between productivity growth on the one hand, and

demographic growth on the other, implied total TFP growth is calculated using Domar weights.

The implied TFP growth thus writes

gTFP
t ≡ pt

Y A
t

Yt
gA
t +

Y M
t

Yt
gM
t = ptθ

yA
t

yt
gA
t + (1− θ)

yM
t

yt
gM
t ,

where Y = pY A + Y M measures GDP. Figure 2 combines the adjustment dynamics for implied

TFP growth (the solid line) and population growth (the dotted line). As is evident from the

illustration, the growth rate of population reaches its peak by the end of the 19th century,

whereas implied TFP growth peaks about one century later.

Figure 2: Long-Run Dynamics: Implied TFP Growth and Population Growth
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Solid line: TFP growth, dotted line: population growth

This result nicely fits ideas proposed by Galor and Weil (2000). According to their theory, the

drop in fertility (the demographic transition) does not emerge before the rate of TFP growth

reaches substantial levels. In fact, the current model predicts a structural break for the correla-

tion between TFP growth and population growth. As is evident from Figure 3, the correlation

14



is positive before the year 1875, i.e. during the Malthusian phase, when TFP growth is rela-

tively slow, and the rate of population growth is on the rise. By 1875, the rate of growth of

population reaches its peak, and then starts to decline. However, TFP growth, at least for a

while, continues to rise, indicating a negative correlation between TFP and population growth

after 1875. Empirically, this is not an unfamiliar result. For the past century, Bernanke and

Guerkaynak (2002) provide supporting evidence for the negative correlation between TFP and

population growth. For the pre-industrial period, by contrast, a positive relationship between

TFP and population growth is well-documented by Clark (2007).11

Figure 3: Population-TFP-Nexus:
From Year 100 to 1875 (left) and from 1875 to 1975 (right)
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The model’s prediction concerning the relationship between population size and population

growth is also noteworthy. Using a one-sector variant of the current model, but with an ex-

ogenously imposed rate of population growth, Kremer (1993) establishes a remarkable positive

correlation between the size and growth of population, a phenomenon unseen for any other

species than humans. His result is supported empirically, though only weakly for the last data

points concerning the 20th century (cf. his Figure 1).

Repeating Kremer’s exercise using the present model, a structural break is generated in the

year 1875. From one million BC to 1875, the correlation is positive, as suggested by Kremer. The

slope is non-linear and the best fit of the correlation is obtained for the function gL = const·L0.15.

This suggests that the positive correlation was particularly strong during early times, and then

11After 1975, a third phase, in which both population growth and TFP growth decline, can be observed, once
again suggesting a (modest) positive correlation.
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Figure 4: Population-Size and Population Growth:
From One Million B.C. to Year 1875 (left) and from 1875 to 2000 (right)
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became flatter as the population growth rate reaches its peak. After 1875, for industrialized and

fully-developed countries, the correlation turns negative, and, indeed, becomes almost linear.

Finally, an analysis of variation in the taste for children provides insight with respect to

understanding the differences in the timings of the industrial revolution and the demographic

transition across countries. Compared to the benchmark case (solid lines), the dashed lines in

Figure 1 capture the adjustment dynamics of an alternative economy. In the alternative economy,

everything is identical to the benchmark case, except for γ which is set to 4.5 instead of 3.4. All

other things being equal, parents in the alternative economy hence display a stronger taste for

children than parents of the benchmark economy. As has been demonstrated by Strulik (2008),

population growth, on average, peaks at higher rates in countries of lower latitude. Following

Strulik, therefore, the dashed lines of Figure 1 would capture a country situated closer to the

equator than England.

Having a relatively strong taste for children involves parents having a relatively large demand

for food. In the alternative economy, therefore, agriculture will dominate for more years than in

the benchmark economy. Hence, when the industrial revolution sets off in the benchmark case,

industrial productivity growth in the alternative economy is still relatively slow. In terms of

Figure 1, the ‘industrial revolution’ (i.e. the transfer of labor from agriculture to industry) and

the fertility drop in the alternative economy both start about 75 years (or three generations)

later than in the benchmark case. However, once structural changes begin to emerge in the

alternative economy, industrial productivity growth is faster than in the benchmark case. The
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reason, of course, is that the alternative economy’s population level, and thus its learning-by-

doing effects, are larger because of a stronger taste for children. In terms used by Bloom et al.

(2001), the alternative economy ultimately earns its ‘demographic dividend’, and it eventually

draws nearer to the benchmark economy, because of its higher growth rate of productivity and

its faster rate of structural change. Effectively, a catching up (and eventual overtaking) is,

therefore, at play.

5. Empirical Evidence

In this section, we resort to historical data to look for empirical evidence in support of the

theory presented above. The main prediction of the model – as captured by equation (4) – is

that a comparatively high relative price of food implies a comparatively low rate of fertility, and

vice versa. Although historical birth rates for contemporary industrialized countries are fairly

easy to obtain, historical data on the relative price of food (explicitly defined as the price of

agricultural goods divided by the price of industrial goods) is hard to come by. In fact, such

prices for most countries do not exist before the middle of the twentieth century, i.e. long after

the historical fertility decline has ended. Meanwhile, four countries that are usually subject to

very long-run economic and demographic analyses—England, France, Germany and Sweden—do

indeed have these data available for appropriate periods.

When possible, the price data presented in the following is collected, so that it runs from

shortly before the demographic transitions begin. In England, the onset of the demographic

transition is to be found soon after the turn to the nineteenth century. Hence, for England,

our data runs from 1800 on. In France, the fertility decline begins somewhat earlier. However,

French price data does not exist before 1820, which makes 1820 the initial year. Compared

to France and England, the demographic transitions in Germany and Sweden began relatively

late, around 1875 in both cases. For Germany, price data dates back to 1820, whereas, in the

Swedish case, such data is not available before 1880. Hence, 1820 and 1880 are the initial years

for Germany and Sweden, respectively. For all countries, the data runs up until 1913.

Figure 6 plots a time-series for each of the four countries, showing the annual relative price

of food (PAPM) together with the crude birth rate (CBR).12 For all four cases, there appear

12The use of crude birth rates rather than total fertility rates is a matter of data availability. To the best of
our knowledge, total fertility rates, for the relevant periods, are only available for England and Sweden, and only
in five-year intervals. In any case, crude birth rates and total fertility rates largely follow the same trend (for a
comparison, see Statistics Sweden, 2006, and Lee and Schofield, 1981).
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Figure 5: Evidence: Relative Food Prices and Crude Birth Rates
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Source: Crude birth rates for all four countries: Murphy and Dyson (1986). Price data: England: Agricul-
tural prices, 1800-1805: Deane and Cole (1962). Agricultural prices, 1805-1913: Mitchell and Deane (1962).
Industrial prices: Mitchell and Deane (1962). France: Agricultural and industrial prices: Bourguignon and
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tural prices: Schön (1995). Industrial prices: Larsson (2006). England: PAPM 1900=100; France: PAPM
1890=100; Germany and Sweden: PAPM 1913=100.

to be a downward trend in fertility, as well as an upward trend in the relative price of food,

leaving a (stylized) impression of an overall negative correlation between the two variables.13 In

the case of France, the inverse relationship seems to be particularly clear-cut, at least up until

the end of the 19th century. This is a noteworthy result, especially considering the fact that

France—because of a relatively early onset of its demographic transition—does not fit well into

the explanations of other unified growth theories.

6. Extensions and Generalizations

In this section, we check the robustness of the results of the basic framework proposed in

Section 2. More specifically, we extent and generalize the model in four different directions.

13A simple regression analysis shows that negative correlation between the relative price of food and the birth
rate is associated with an R2-value of 40 percent for England, 67 percent for France, 12 percent for Germany, and
54 percent for Sweden. However, more substantial time-series analyses need to be carried out in order to appraise
these conclusions. Such analyses, however, lie outside the scope of the present paper.
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These concern (i) returns-to-labor in manufacturing; (ii) Engel’s Law and the demand for food;

(iii) the income-effect on the demand for children; and (iv) the long-run predictions of the basic

model.

The generalizations imply that our theory looses some of its simplicity. In particular, the

extended model can no longer be solved by hand, or using a spreadsheet, meaning that nu-

merical tools are needed in order to obtain a solution. Since this is true for each of the four

generalizations, they will be introduced simultaneously (although their effects will be discussed

separately).

The first generalization concerns returns-to-labor in the production of manufactured good.

We want to demonstrate that the constant returns-to-labor assumption of the basic framework

can be replaced by diminishing returns without affecting the model’s qualitative conclusions.

Hence, we replace (6) with a generalized production function for manufactured goods, which is

given by

Y M
t = δMφ

t

(
LM

t

)λ
= Mt+1 −Mt, 0 < φ < 1, 0 < λ ≤ 1. (16)

It follows that the size of the parameter λ determines whether there is constant (λ = 1) or

diminishing (0 < λ < 1) returns-to-labor in manufacturing.

As for the second extension, we want to introduce a less restrictive demand for food. In the

basic model, children required a fixed amount of food for survival. This assumption complies

with one aspect of Engel’s Law, namely that the share of food expenditures to the total income

falls with rising income. However, Engel’s Law also permits that total food expenditure (and

thus the total costs of children) increases with rising income, as long as the share of income

spent on foodstuff goes down. In the interest of keeping most of model’s original structure and

tractability, we thus reformulate the household budget constraint, formerly given by (3), so that

it now reads

wt = ptnt(a + bwt) + mt, a > 0, b ≥ 0. (17)

Note that the parameter a can be thought of as a ‘subsistence’ food consumption level, i.e. the

number calories required to ensure the survival of a child.14

The third extension concerns the claim that quasi-linear preferences are used for tractability

only, and that such preferences are not essential for the qualitative nature of the results to

14Alternative ways in which to include Engel’s Law are provided by Strulik (2008) and Dalgaard and Strulik
(2008).
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hold. As was indicated in Section 4, a main feature of the preference function required for the

basic results to hold is that the elasticity of the marginal utility is higher for children than

for manufactured goods. A parameterization of a more general utility function that fulfils this

condition (and is still in keeping with the ideas of the basic framework) would be given by

ut = γ lnnt +
m1−σ

t

1− σ
. (18)

Having kept the log-form for fertility, we need the restriction that σ < 1 to establish our so-

called hierarchy of needs.15 By contrast to the basic framework, and in addition to the negative

price-effect, using (18) there will be a direct (and positive) effect of income growth on fertility.

As will become apparent below, the first three model extensions described above will influence

on the shape of the adjustment dynamics, but will have no effect on the qualitative nature of

the model’s results. The final extension, however, is deliberately made, so as to fundamentally

change the results of the basic framework.

In the basic framework, productivity growth was directly linked to growth in the size of the

population. Meanwhile, we want to show that the basic model can be extended, so that it

matches the results of the existing endogenous growth literature, in which persistent growth of

income per capita is a long-run feature. To this end, suppose that parents have a minimum

number of children, symbolically denoted n̄, that they would like to bring up. Rewriting (18) in

order to include this, the extended utility function now reads

ut = γ ln(nt − n̄) +
m1−σ

t

1− σ
. (19)

which replaces (2) from the basic framework.

The new first-order condition for maximizing (19) with respect to (17) can be condensed into

γ = pt(nt− n̄)mσ
t (a+ bwt). Together with (16), this provides the demand for children, as well as

for manufactured goods. However, combining this with the equilibrium conditions for the goods

market and the factor market, equations (1) and (5), we can no longer obtain a closed-form

solution for fertility. Rather, the rate of fertility, the relative price of food, and the share of

15The restriction on σ could be relaxed by introducing a general iso-elastic form for utility for children, with
elasticity of, say, σn, and then requiring σ < σn.
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workers employed in agriculture are now jointly determined in the following set of equations:

ptnta

θt(1− bptnt)
= δMφ

t (1− θ)λ−1Lλ−1
t (20a)

pt(nt − n̄)
(

a + b
ptnta

θt(1− bptnt)

)
= γ

(
δMφ

t (1− θt)λLλ−1
t

)σ
(20b)

ntL
1−α
t

µAε
t

(
a + b

ptnta

θt(1− bptnt)

)
= θα

t . (20c)

In the basic framework, it was implicitly assumed that a = λ = 1 and that b = σ = n̄ = 0.

Under these assumptions, the above system of equations transforms into equations (4), (8), and

(10) of the basic model. As for the general case, however, this can be solved numerically for the

three unknowns, pt, nt and θt, for any given values of state variables Lt, At and Mt. The state

variables themselves evolve according to (1), (5), and (16). Thus, we can solve numerically for

the evolution of the economy for any given start values of L0, A0 and M0.

What is to be expected from the extensions and generalizations introduced above? According

to (20b), the introduction of σ ∈ (0, 1) allows for changes in income to impact on fertility.

The direct income-effect on fertility, which was absent in the basic framework, is small at early

stages of development, but is increasing with rising levels of income and with industrialization.

Furthermore, the higher is σ, the more sluggish is the population growth slowdown during the

second phase of demographic transition. In other words, the slowdown of TFP growth during

the second phase of the demographic transition thus happens more quickly the smaller is σ.

Quite the opposite is the case when food (and thus child) expenditures become income-

dependent. Having b > 0 instead of b = 0 makes children relatively more expensive, when

income per capita is high. This means that adults living in relatively rich (i.e. industrialized)

countries face a relatively high cost per child. It follows that an increase in b has a relatively

modest effect on fertility at low income levels (i.e. before industrialization) when the costs of

subsistence food consumption, a, have a dominant impact on fertility.

The two modifications discussed thus far (i.e. the introduction of σ and b different from zero)

do not affect the qualitative (and hardly even the quantitative) results of the model. This is

confirmed by Figure 6, where the solid lines show a case where the new parameters are given by

σ = 0.5, a = 0.9, γ = 3 and b = 0.1/γ = 0.033. Note that the value of γ is slightly different from

the original calibration; it is merely adjusted, so that the population growth rate peaks at 1.5

percent, which was also the case in the previous calibration. The remaining parameter values
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are kept intact from the benchmark specification. Finally, the parameter b is adjusted, so that

the income-share of food expenditures converges to 10 percent from above, when income goes

to infinity.

Figure 6: Long-Run Dynamics: Generalizations
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Solid lines: σ = 0.5, a = 0.9, b = 0.033, γ = 3, all other parameters as for the benchmark
case. Dashed lines: additionally λ = 0.95 From top to bottom the diagrams show popula-
tion growth, productivity growth in agriculture, productivity growth in manufacturing, food
expenditure, and the income share of food expenditure.

Comparing Figure 1 to Figure 6, the new transitional path is largely similar to that of the basic

model. The most striking difference is the ‘undershooting’ behavior of the population growth
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rate: by the end of demographic transition, the population growth rate (i.e. gL) approaches zero

from below, resulting in a negative rate of growth of population by the 22nd century. On a

whole, the adjustment dynamics for the population growth rate looks more like a ‘turned J’

than an ‘inverted U’, comprising a long and slow increase in fertility during the first phase of the

transition, and then a comparably short and fast decrease in fertility during the second phase.

The fourth and fifth panel of Figure 6 illustrate the development of food expenditures, both

in absolute terms, measured by e (with normalization e1875 = 100), and as a share of income,

measured by e/w. In line with the empirical evidence on Engel’s Law (see Grigg, 1994), we

observe that food expenditures as a share of income start to fall long before the ‘industrial

revolution’ sets in, and that it is down to just 50 percent by the mid-19th century. Eventually,

food expenditures’ share of income converges to the pre-fixed 10 percent.

Note also that there is relatively little movement in food expenditures, when measured in

absolute terms, before the 19th century. After ‘industrialization’ sets in, food expenditures

increase substantially. Yet, the model underpredicts the empirical increase in food expenditures

per capita, which seems to have been much higher (ibid.). As already explained, this shortcoming

can be attributed to the neglect of factor accumulation, the lack of which causes slower income

growth, and, therefore, slower growth of food expenditures.

Next, we analyze the results of introducing diminishing instead of constant returns-to-labor in

manufacturing. Hence, rather than λ = 1, we now set λ = 0.95. All other things being equal, the

reduction of labor productivity in manufacturing, resulting from the introduction of diminishing

returns-to-labor, downscales the performance of this sector relative to that of agriculture. This

means that the relative price of food is comparatively lower, and fertility therefore higher, when

diminishing returns-to-labor apply to manufacturing.

Indeed, diminishing returns in manufacturing involve two opposite effects on development. On

the on hand, a higher rate of population growth tends to slow down the process of development,

which postpones the ‘industrial revolution’ (a ‘Malthusian’ effect). On the other hand, once

industrialization gains momentum, rates of productivity growth are higher than in the case of

constant-returns; this arises from the ‘demographic dividend’ result discussed in Section 4.
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For better readability of the results, the timing of events is normalized, so that the peak of

the demographic transition is reached in 1870 with both constant and the diminishing returns-

to-labor. The results are illustrated in Figure 6, where the solid lines represent constant returns-

to-labor, and the dashed lines diminishing returns.

While the time-normalization tends to blur the slowdown of development (the ‘Malthusian’

effect), the Figure clearly demonstrates the scale-effect on productivity growth of having higher

population levels (the ‘demographic dividend’ effect). However, during the second phase of

demographic transition, the industrial sector expands more rapidly, leading ultimately to a

faster reduction in rates of population growth, and therefore also to a stronger ‘undershooting’

behavior (i.e. negative population growth) in the first centuries of the new millennium.

The final element is the introduction of a minimum number of children, n̄ > 1. How does

this modification affect the results of the model? For expositional purposes, we return in the

following to the basic specification of the utility function, where b = σ = 0. This means that

the optimal rate of fertility now reads nt = n̄ + γ/(apt). Thus, it follows that we disable one of

the main mechanisms of the basic model, as population growth (instead of going to zero) now

converges to gL = n̄− 1 for pt →∞.

When considering the ‘double’ knife-edge condition, n̄ = 1 = φ, the long-run results of the

model compares with endogenous growth models of the first generation (based on Romer, 1990).

The population level is stagnant, and persistent economic growth is made possible by constant

returns to existing knowledge in the production of new knowledge.

For the more general case, where n̄ > 1 and 0 < φ < 1, the long-run results become identical

to endogenous growth models of the second generation (based on Jones, 1995). With diminishing

returns-to-knowledge (i.e. with 0 < φ < 1), persistent growth of productivity and income appears

only in the case of persistent population growth. In the following, we explore this case in more

detail.16

Balanced growth, in combination with positive population growth, over the long-run implies

that the parameter values must be set, so that the industrial sector expands at a faster rate than

16The condition for balanced growth could be further relaxed, if we were to allow for knowledge-spillovers between
the two sectors, as is the case in endogenous growth models of the third generation (see, for example, Strulik,
2005). However, since the sophistication of endogenous growth is not the focus of the present paper, this case is
not pursued further.
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that of agriculture. In the opposite case, food prices would be driven to zero, leading ultimately

(as was discussed in Section 4) to exploding growth.

Along the balanced growth path, we now have that 1 + gM =
(
1 + gL

)λ/(1−φ) and that

1 + gA =
(
1 + gL

)α/(1−ε). Balanced growth thus requires that

λ

1− φ
>

α

1− ε
. (21)

In the standard-type endogenous growth models (e.g. Jones, 1995), there is no endogenous

population growth. Furthermore, there is no agricultural sector, which means that (21) collapses

into λ/(1 − φ) > 0. Jones (2001) does a calibration of his 1995-model, where he allows for

endogenous population growth. Although he uses a different mechanism to explain fertility

behavior, and even though he includes no agricultural sector (and, therefore, has no structural

transformations), his calibration compares nicely with that of our extended model.

If food prices are increasing persistently, then the growth rate of population converges to

gL = n̄ − 1, while productivity growth in manufacturing converges to n̄λ/(1−φ). The rate of

growth of income per capita is positive, yet lower than that of the industrial sector. The reason

for this is that the agricultural sector is subject to diminishing returns, and that it needs to

constantly expand its production in order to feed an ever increasing population.

Figure 7 demonstrate the trajectories for the case where n̄ = 1.04. The remaining parameter

values are identical to those of the basic calibration in Section 4. The third panel illustrates the

development of the log of income. Industrialization is synonymous to an endogenous structural

break, after which income (which is largely constant before the 19th century) begins to grow

(almost at a constant rate). The growth rate of productivity for manufacturing now peaks in

the first half of the 21th century (or three generation later than in the basic model). However,

even by the turn of the third millennium, its growth rate still exceeds one percent per year. The

growth rate then slowly converges to a steady-state level of 0.22 percent annually.

These relatively high rates of productivity growth are made possible only because of a slowly

converging rate of population growth. For the year 2100, the parameterization of the model

predicts a population level five times that of the year 2000. By the year 2500, the population

level has increased 500 fold compared to its year-2000 level.

Meanwhile, the Malthusian idea—that positive population growth (no matter how small)

cannot persist forever—might still be valid, making the above scenario subject to suspicion.
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Figure 7: Growth in the Very Long-Run: Year 1200 to 3000
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If so, then we need not, as has been done in previous growth models, impose a constant rate

of growth of population over the long run, or assume a particular set of parameter values

that prevent an ever growing population. Instead, we can simply remove the assumption of

minimum fertility. This will bring us back to the simple model presented in Section 2. This

model predicts that, as agricultural products get scarcer relative to manufactured goods, and

when the population level, and thus the aggregate food demand, goes up, a price mechanism

automatically ensures convergence towards a stable population.

7. Conclusion

This paper provides a unified growth theory, i.e. a model consistent with the very long-run

economic and demographic development path of industrialized economies, stretching from the
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Malthusian era to the present-day and beyond. Making strict use of Malthus’ so-called preventive

check hypothesis—that fertility rates vary inversely with the price of food—the current study

offers a new and straightforward explanation for the demographic transition and the break with

the Malthusian era.

Existing unified growth theories focus on human capital accumulation and a trade-off of child-

quantity for child-quality as the driving force behind the demographic transition. The present

study offers an alternative explanation, which nicely complements the ideas proposed in the

existing literature, especially Galor and Weil (2000).

Employing a two-sector framework with agriculture and industry, we demonstrate how fertility

responds differently to productivity and income growth, depending on whether it emerges in

agriculture or industry: agricultural productivity and income growth makes food goods, and

therefore children, relatively less expensive. Industrial productivity and income growth, on the

other hand, makes food goods, and therefore children, relatively more expensive.

In the basic model, an agricultural revolution is succeeded by an industrial revolution, causing

initial increase in fertility, followed by substantial decrease (a demographic transition). These

events occur endogenously, after which the economy converges to a balanced growth path, along

which there is zero population growth and zero (exponential) economic growth. We show some

evidence in support of the main prediction of our theory: that fertility vary inversely with

the relative price of food, and we demonstrate, by extending the model, that it is capable of

matching the results, not only of existing unified growth theories, but also the endogenous

growth literature in general.
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